Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Succinct LWE Sampling, Random Polynomials, and Obfuscation

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13043))

Included in the following conference series:

Abstract

We present a construction of indistinguishability obfuscation (iO) that relies on the learning with errors (LWE) assumption together with a new notion of succinctly sampling pseudorandom LWE samples. We then present a candidate LWE sampler whose security is related to the hardness of solving systems of polynomial equations. Our construction improves on the recent iO candidate of Wee and Wichs (Eurocrypt 2021) in two ways: first, we show that a much weaker and simpler notion of LWE sampling suffices for iO; and secondly, our candidate LWE sampler is secure based on a compactly specified and falsifiable assumption about random polynomials, with a simple error distribution that facilitates cryptanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our notion of succinct randomized encodings is weaker than prior works: indeed, [BGL+15] required the encoder to run in time sublinear in N, whereas we allow the encoder run-time to be polynomial in N.

  2. 2.

    In the WW terminology, this would be a candidate K-sim functional encoding for \(f_1,\ldots ,f_K : \{0,1\}^\ell \rightarrow \{0,1\}^M\).

  3. 3.

    It is simpler in terms of syntax, since we do not refer to LWE trapdoors for \(\mathbf {A}\), and in terms of the security requirement since we do not require a simulator, but instead have a simple indistinguishability criterion.

  4. 4.

    In general, we can use a different (small) distributions \(D_P\) and \(D_{P'}\) for \(\mathbf {P}\), \(\mathbf {P}'\). We only set \(D_P = D_P' = \chi \) to minimize the number of distributions and parameters.

  5. 5.

    The first constraint is redundant with the constraints of Corollary 1.

  6. 6.

    We prove that \(\mathrm {rank}\left( \overline{\mathbf {A}}^*\right) \le m^d - (m-w)^d\) in Sect. 4.5, paragraph Rank of \(\mathbf {A}^* \mathbf {S}^*\).

  7. 7.

    Writing \(m = m'\,+\,w\) where \(m'>0\), the difference \((m'\,+\,w)^d \,-\, (m'^d\,+\,dw(m'\,+\,w)^{d-1})\) is the sum of monomials in \(m',w\) with positive coefficients.

  8. 8.

    This is without loss of generality by defining for instance \(\chi ' = \chi \,+\, [-B,B]\) where \(B'\) is large enough to satisfy the previous constraint. A direct reduction ensures that if LWE holds with \(\chi \), then it holds with \(\chi '\).

References

  1. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new methods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_7

    Chapter  Google Scholar 

  2. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_15

    Chapter  Google Scholar 

  3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

    Chapter  Google Scholar 

  4. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without multilinear maps: new paradigms via low degree weak pseudorandomness and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_10

    Chapter  Google Scholar 

  5. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17

    Chapter  Google Scholar 

  6. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps: attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_5

    Chapter  Google Scholar 

  7. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 173–205. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_7

    Chapter  Google Scholar 

  8. Bitansky, N., et al.: Indistinguishability obfuscation for RAM programs and succinct randomized encodings. SIAM J. Comput. 47(3), 1123–1210 (2018)

    Article  MathSciNet  Google Scholar 

  9. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 407–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_16

    Chapter  Google Scholar 

  10. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomorphic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_4

    Chapter  Google Scholar 

  11. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not necessary for iO: circular-secure LWE suffices. Cryptology ePrint Archive, Report 2020/1024 (2020)

    Google Scholar 

  12. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  13. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 439–448. ACM Press, June 2015

    Google Scholar 

  14. Barak, B., Hopkins, S.B., Jain, A., Kothari, P., Sahai, A.: Sum-of-squares meets program obfuscation, revisited. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 226–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_8

    Chapter  Google Scholar 

  15. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10

    Chapter  Google Scholar 

  16. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer Society Press, October 2011

    Google Scholar 

  17. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer Society Press, October 2015

    Google Scholar 

  18. Chen, Y., Hhan, M., Vaikuntanathan, V., Wee, H.: Matrix PRFs: constructions, attacks, and applications to obfuscation. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 55–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_3

    Chapter  Google Scholar 

  19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

    Google Scholar 

  20. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 438–464. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_17

    Chapter  Google Scholar 

  21. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In: STOC (2021)

    Google Scholar 

  22. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_11

    Chapter  Google Scholar 

  23. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  24. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R., (eds.) 47th ACM STOC, pp. 469–477. ACM Press, June 2015

    Google Scholar 

  25. Hopkins, S., Jain, A., Lin, H.: Counterexamples to new circular security assumptions underlying iO. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 673–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_23

    Chapter  Google Scholar 

  26. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree expanding polynomials over \(\mathbb{R}\) to build \(i\cal{O}\). In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_9

    Chapter  Google Scholar 

  27. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: STOC (2021)

    Google Scholar 

  28. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp. 20–31. ACM Press, May 1988

    Google Scholar 

  29. Kosov, E.: Distributions of polynomials in Gaussian random variables under structural constraints (2020)

    Google Scholar 

  30. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_17

    Chapter  Google Scholar 

  31. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  32. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

    Chapter  Google Scholar 

  33. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press, May/June 2009

    Google Scholar 

  34. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4

    Chapter  Google Scholar 

  35. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31

    Chapter  Google Scholar 

  36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005

    Google Scholar 

  37. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part III. LNCS, vol. 12698, pp. 127–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_5

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Pravesh Kothari for his pointers to and conversations about the literature on SOS and low-degree polynomial attacks. LD and VV were supported by DARPA under Agreement No. HR00112020023, a grant from the MIT-IBM Watson AI, a grant from Analog Devices, a Microsoft Trustworthy AI grant, and a DARPA Young Faculty Award. WQ completed part of this work during an internship at NTT Research. DW was supported by NSF grant CNS-1750795, CNS-2055510, and the Alfred P. Sloan Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalita Devadas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devadas, L., Quach, W., Vaikuntanathan, V., Wee, H., Wichs, D. (2021). Succinct LWE Sampling, Random Polynomials, and Obfuscation. In: Nissim, K., Waters, B. (eds) Theory of Cryptography. TCC 2021. Lecture Notes in Computer Science(), vol 13043. Springer, Cham. https://doi.org/10.1007/978-3-030-90453-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90453-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90452-4

  • Online ISBN: 978-3-030-90453-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics