Abstract
We present a construction of indistinguishability obfuscation (iO) that relies on the learning with errors (LWE) assumption together with a new notion of succinctly sampling pseudorandom LWE samples. We then present a candidate LWE sampler whose security is related to the hardness of solving systems of polynomial equations. Our construction improves on the recent iO candidate of Wee and Wichs (Eurocrypt 2021) in two ways: first, we show that a much weaker and simpler notion of LWE sampling suffices for iO; and secondly, our candidate LWE sampler is secure based on a compactly specified and falsifiable assumption about random polynomials, with a simple error distribution that facilitates cryptanalysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Our notion of succinct randomized encodings is weaker than prior works: indeed, [BGL+15] required the encoder to run in time sublinear in N, whereas we allow the encoder run-time to be polynomial in N.
- 2.
In the WW terminology, this would be a candidate K-sim functional encoding for \(f_1,\ldots ,f_K : \{0,1\}^\ell \rightarrow \{0,1\}^M\).
- 3.
It is simpler in terms of syntax, since we do not refer to LWE trapdoors for \(\mathbf {A}\), and in terms of the security requirement since we do not require a simulator, but instead have a simple indistinguishability criterion.
- 4.
In general, we can use a different (small) distributions \(D_P\) and \(D_{P'}\) for \(\mathbf {P}\), \(\mathbf {P}'\). We only set \(D_P = D_P' = \chi \) to minimize the number of distributions and parameters.
- 5.
The first constraint is redundant with the constraints of Corollary 1.
- 6.
We prove that \(\mathrm {rank}\left( \overline{\mathbf {A}}^*\right) \le m^d - (m-w)^d\) in Sect. 4.5, paragraph Rank of \(\mathbf {A}^* \mathbf {S}^*\).
- 7.
Writing \(m = m'\,+\,w\) where \(m'>0\), the difference \((m'\,+\,w)^d \,-\, (m'^d\,+\,dw(m'\,+\,w)^{d-1})\) is the sum of monomials in \(m',w\) with positive coefficients.
- 8.
This is without loss of generality by defining for instance \(\chi ' = \chi \,+\, [-B,B]\) where \(B'\) is large enough to satisfy the previous constraint. A direct reduction ensures that if LWE holds with \(\chi \), then it holds with \(\chi '\).
References
Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new methods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_7
Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_15
Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29
Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without multilinear maps: new paradigms via low degree weak pseudorandomness and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_10
Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17
Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps: attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_5
Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 173–205. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_7
Bitansky, N., et al.: Indistinguishability obfuscation for RAM programs and succinct randomized encodings. SIAM J. Comput. 47(3), 1123–1210 (2018)
Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 407–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_16
Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomorphic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_4
Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not necessary for iO: circular-secure LWE suffices. Cryptology ePrint Archive, Report 2020/1024 (2020)
Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1
Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 439–448. ACM Press, June 2015
Barak, B., Hopkins, S.B., Jain, A., Kothari, P., Sahai, A.: Sum-of-squares meets program obfuscation, revisited. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 226–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_8
Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer Society Press, October 2011
Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer Society Press, October 2015
Chen, Y., Hhan, M., Vaikuntanathan, V., Wee, H.: Matrix PRFs: constructions, attacks, and applications to obfuscation. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 55–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_3
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013
Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 438–464. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_17
Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In: STOC (2021)
Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_11
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R., (eds.) 47th ACM STOC, pp. 469–477. ACM Press, June 2015
Hopkins, S., Jain, A., Lin, H.: Counterexamples to new circular security assumptions underlying iO. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 673–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_23
Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree expanding polynomials over \(\mathbb{R}\) to build \(i\cal{O}\). In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_9
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: STOC (2021)
Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp. 20–31. ACM Press, May 1988
Kosov, E.: Distributions of polynomials in Gaussian random variables under structural constraints (2020)
Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_17
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press, May/June 2009
Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4
Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005
Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part III. LNCS, vol. 12698, pp. 127–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_5
Acknowledgements
We thank Pravesh Kothari for his pointers to and conversations about the literature on SOS and low-degree polynomial attacks. LD and VV were supported by DARPA under Agreement No. HR00112020023, a grant from the MIT-IBM Watson AI, a grant from Analog Devices, a Microsoft Trustworthy AI grant, and a DARPA Young Faculty Award. WQ completed part of this work during an internship at NTT Research. DW was supported by NSF grant CNS-1750795, CNS-2055510, and the Alfred P. Sloan Research Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Devadas, L., Quach, W., Vaikuntanathan, V., Wee, H., Wichs, D. (2021). Succinct LWE Sampling, Random Polynomials, and Obfuscation. In: Nissim, K., Waters, B. (eds) Theory of Cryptography. TCC 2021. Lecture Notes in Computer Science(), vol 13043. Springer, Cham. https://doi.org/10.1007/978-3-030-90453-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-90453-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90452-4
Online ISBN: 978-3-030-90453-1
eBook Packages: Computer ScienceComputer Science (R0)