Abstract
A new interpretation of linear cryptanalysis is proposed. This ‘geometric approach’ unifies all common variants of linear cryptanalysis, reveals links between various properties, and suggests additional generalizations. For example, new insights into invariants corresponding to non-real eigenvalues of correlation matrices and a generalization of the link between zero-correlation and integral attacks are obtained. Geometric intuition leads to a fixed-key motivation for the piling-up principle, which is illustrated by explaining and generalizing previous results relating invariants and linear approximations. Rank-one approximations are proposed to analyze cell-oriented ciphers, and used to resolve an open problem posed by Beierle, Canteaut and Leander at FSE 2019. In particular, it is shown how such approximations can be analyzed automatically using Riemannian optimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The present framework only describes zero-sum properties.
- 2.
For the case of multidimensional zero-correlation approximations with ‘coupled masks’, apply Theorem 4.2 to the function \(x \mapsto (x, \mathsf {F}{}(x))\) to obtain their result.
- 3.
If \(B_i\) is a matrix whose columns form a basis for \(V_i\), then the matrix-representation of \(\langle V_{i + 1}, V_i \rangle _{\mathsf {F}_i}\) with respect to these bases is \((B_{i + 1}^* B_{i + 1})^{-1} B_{i + 1}^* C^{\mathsf {F}_i} B_{i}(B_{i}^* B_{i})^{-1} \). Note the normalization factors for non-orthonormal bases.
References
Abdelraheem, M.A., Ågren, M., Beelen, P., Leander, G.: On the distribution of linear biases: three instructive examples. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 50–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_4
Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_31
Baignères, T., Stern, J., Vaudenay, S.: Linear cryptanalysis of non binary ciphers. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 184–211. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3_13
Beierle, C., Canteaut, A., Leander, G.: Nonlinear approximations in cryptanalysis revisited. IACR Trans. Symm. Cryptol. 4, 80–101 (2018)
Beyne, T.: Block cipher invariants as eigenvectors of correlation matrices. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 3–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_1
Beyne, T.: Linear Cryptanalysis in the Weak Key Model. Master’s thesis, KU Leuven (2019). https://homes.esat.kuleuven.be/~tbeyne/masterthesis/thesis.pdf
Beyne, T.: A geometric approach to linear cryptanalysis. Cryptology ePrint Archive, Report 2021/1247 (2021). https://ia.cr/2021/1247
Beyne, T.: Linear cryptanalysis of FF3-1 and FEA. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 41–69. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_3
Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approximations. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_1
Björck, Å., Golub, G.H.: Numerical methods for computing angles between linear subspaces. Math. Comput. 27(123), 579–594 (1973)
Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_21
Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_16
Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanalysis of block ciphers. Des. Codes Cryptogr. 70(3), 369–383 (2014)
Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_21
Collard, B., Standaert, F.-X.: A statistical saturation attack against the block cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–210. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_13
Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_21
Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052343
Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_20
De Silva, V., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)
Granboulan, L., Levieil, É., Piret, G.: Pseudorandom permutation families over abelian groups. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 57–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_5
Harpes, C., Kramer, G.G., Massey, J.L.: A generalization of linear cryptanalysis and the applicability of matsui’s piling-up lemma. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X_3
Harpes, C., Massey, J.L.: Partitioning cryptanalysis. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 13–27. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052331
Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis of reduced round serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70500-0_15
Jordan, C.: Essai sur la géométrie à \( n \) dimensions. Bull. de la Société mathématique de France 3, 103–174 (1875)
Kaliski, B.S., Robshaw, M.J.B.: Linear cryptanalysis using multiple approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_4
Knudsen, L.R., Robshaw, M.J.B.: Non-linear approximations in linear cryptanalysis. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 224–236. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_20
Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_9
Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_2
Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 303–322. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_18
Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_12
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33
Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053460
Parker, M., Raddum, H.: \(\mathbb{Z}_4\)-linear cryptanalysis. Tech. rep., NESSIE Internal Report: NES/DOC/UIB/WP5/018/1 (2020)
Smith, S.T.: Optimization techniques on riemannian manifolds. Fields Inst. Commun. 3(3), 113–135 (1994)
Sun, B., et al.: Links among impossible differential, integral and zero correlation linear cryptanalysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 95–115. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_5
Tardy-Corfdir, A., Gilbert, H.: A known plaintext attack of FEAL-4 and FEAL-6. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 172–182. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_12
Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge University Press, Cambridge (1999)
Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12
Todo, Y., Leander, G., Sasaki, Yu.: Nonlinear invariant attack. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_1
Townsend, J., Koep, N., Weichwald, S.: Pymanopt: a python toolbox for optimization on manifolds using automatic differentiation. J. Mach. Learn. Res. 17(137), 1–5 (2016)
Vaudenay, S.: An experiment on DES statistical cryptanalysis. In: ACM CCS 96, pp. 139–147
Wagner, D.: Towards a unifying view of block cipher cryptanalysis. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 16–33. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_2
Acknowledgments
This work is based on my master’s thesis “Linear Cryptanalysis in the Weak-Key Model” [6]. I’m grateful to Vincent Rijmen for supervising this thesis, and for comments on a draft of this paper. I also thank Gregor Leander and Christof Beierle for interesting discussions about this work at Ruhr-University Bochum. The author is supported by a PhD Fellowship from the Research Foundation – Flanders (FWO).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Beyne, T. (2021). A Geometric Approach to Linear Cryptanalysis. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13090. Springer, Cham. https://doi.org/10.1007/978-3-030-92062-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-92062-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92061-6
Online ISBN: 978-3-030-92062-3
eBook Packages: Computer ScienceComputer Science (R0)