Abstract
“Can we predict if an early stage cancer patient is at high risk of developing distant metastasis and what clinicopathological factors are associated with such a risk?” In this paper, we propose a ranking based censoring-aware machine learning model for answering such questions. The proposed model is able to generate an interpretable formula for risk stratification using a minimal number of clinicopathological covariates through L1-regulrization. Using this approach, we analyze the association of time to distant metastasis (TTDM) with various clinical parameters for early stage, luminal (ER + /HER2-) breast cancer patients who received endocrine therapy but no chemotherapy (n = 728). The TTDM risk stratification formula obtained using the proposed approach is primarily based on mitotic score, histological tumor type and lymphovascular invasion. These findings corroborate with the known role of these covariates in increased risk for distant metastasis. Our analysis shows that the proposed risk stratification formula can discriminate between cases with high and low risk of distant metastasis (p-value < 0.005) and can also rank cases based on their time to distant metastasis with a concordance-index of 0.73.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Machin, D., Cheung, Y.B., Parmar, M.: Survival Analysis: A Practical Approach, 2nd ed. Chichester, England; Hoboken, NJ, Wiley (2006)
Emmerson, J., Brown, J.M.: Understanding survival analysis in clinical trials. Clin. Oncol. 33(1), 12–14 (2021). https://doi.org/10.1016/j.clon.2020.07.014
Collett, D.: Modelling Survival Data in Medical Research, 2nd edition. Boca Raton, Fla: Chapman and Hall/Crc (2003)
Ma, J., Hobbs, B.P., Stingo, F.C.: Statistical methods for establishing personalized treatment rules in oncology. BioMed Res. Int. 2015, e670691 (2015). https://doi.org/10.1155/2015/670691
Rossi, A., Torri, V., Garassino, M.C., Porcu, L., Galetta, D.: The impact of personalized medicine on survival: comparisons of results in metastatic breast, colorectal and non-small-cell lung cancers. Cancer Treat. Rev. 40(4), 485–494 (2014). https://doi.org/10.1016/j.ctrv.2013.09.012
Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B Methodol. 34(2), 187–220 (1972)
Witten, D.M., Tibshirani, R.: Survival analysis with high-dimensional covariates. Stat. Methods Med. Res. 19(1), 29–51 (2010). https://doi.org/10.1177/0962280209105024
Khan, F.M., Zubek, V.B.: Support vector regression for censored data (SVRc): a novel tool for survival analysis. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 863–868 (2008). https://doi.org/10.1109/ICDM.2008.50
Pölsterl, S., Navab, N., Katouzian, A.: Fast training of support vector machines for survival analysis. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 243–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_15
Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18(1), 24 (2018). https://doi.org/10.1186/s12874-018-0482-1
Di, D., Li, S., Zhang, J., Gao, Y.: Ranking-based survival prediction on histopathological whole-slide images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 428–438. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_41
Wulczyn, E., et al.: Deep learning-based survival prediction for multiple cancer types using histopathology images. ArXiv191207354 Cs Eess Q-Bio (2019). http://arxiv.org/abs/1912.07354. Accessed 22 Dec 2019
Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph CNN for survival analysis on whole slide pathological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_20
Zhao, L., Feng, D.: DNNSurv: deep neural networks for survival analysis using pseudo values. ArXiv190802337 Cs Stat, (2020). http://arxiv.org/abs/1908.02337. Accessed 22 Jun 2021
Kvamme, H., Borgan, Ø., Scheel, I.: Time-to-event prediction with neural networks and cox regression. J. Mach. Learn. Res. 20(129), 1–30 (2019)
Lee, C., Zame, W., Yoon, J., van der Schaar, M.: DeepHit: a deep learning approach to survival analysis with competing risks. Proc. AAAI Conf. Artif. Intell. 32(1), Art. no. 1 (2018). https://ojs.aaai.org/index.php/AAAI/article/view/11842. Accessed 2 Jul 2021
Gensheimer, M.F., Narasimhan, B.: A scalable discrete-time survival model for neural networks (2018). https://doi.org/10.7717/peerj.6257
Fotso, S.: Deep Neural Networks for Survival Analysis Based on a Multi-Task Framework. ArXiv180105512 Cs Stat, (2018). http://arxiv.org/abs/1801.05512. Accessed 30 Apr 2021
Utkin, L.V., Kovalev, M.S., Kasimov, E.M.: SurvLIME-Inf: a simplified modification of SurvLIME for explanation of machine learning survival models (2020). https://arxiv.org/abs/2005.02387v1. Accessed 02 Jul 2021
Rakha, E.A., et al.: Prognostic stratification of oestrogen receptor-positive HER2-negative lymph node-negative class of breast cancer. Histopathology 70(4), 622–631 (2017). https://doi.org/10.1111/his.13108
Makower, D., Lin, J., Xue, X., Sparano, J.A.: Lymphovascular invasion, race, and the 21-gene recurrence score in early estrogen receptor-positive breast cancer. NPJ Breast Cancer 7(1), 1–7 (2021). https://doi.org/10.1038/s41523-021-00231-x
Ignatiadis, M., Sotiriou, C.: Luminal breast cancer: from biology to treatment. Nat. Rev. Clin. Oncol. 10(9), 494–506 (2013). https://doi.org/10.1038/nrclinonc.2013.124
Goldberg, J., et al.: The immunology of hormone receptor positive breast cancer. Front. Immunol., 12, 674192 (2021). https://doi.org/10.3389/fimmu.2021.674192
Bland, J.M., Altman, D.G.: The logrank test. BMJ 328(7447), 1073 (2004)
Romano, J.P., DiCiccio, C.: Multiple Data Splitting for testing. Technical Report No. 2019–03, Stanford University. https://statistics.stanford.edu/sites/g/files/sbiybj6031/f/2019-03.pdf
Raykar, V.C., Steck, H., Krishnapuram, B., Dehing-Oberije, C., Lambin, P.: On ranking in survival analysis: bounds on the concordance index. In: Proceedings of the 20th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, pp. 1209–1216 (2007)
Duraker, N., Hot, S., Akan, A., Nayır, P.Ö.: A comparison of the clinicopathological features, metastasis sites and survival outcomes of invasive lobular, invasive ductal and mixed invasive ductal and lobular breast carcinoma. Eur. J. Breast Health 16(1), 22–31 (2020). https://doi.org/10.5152/ejbh.2019.5004
Lobbezoo, D., et al.: The role of histological subtype in hormone receptor positive metastatic breast cancer: similar survival but different therapeutic approaches. Oncotarget 7(20), 29412–29419 (2016). https://doi.org/10.18632/oncotarget.8838
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Minhas, F., Toss, M.S., ul Wahab, N., Rakha, E., Rajpoot, N.M. (2021). L1-Regularized Neural Ranking for Risk Stratification and Its Application to Prediction of Time to Distant Metastasis in Luminal Node Negative Chemotherapy Naïve Breast Cancer Patients. In: Kamp, M., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol 1525. Springer, Cham. https://doi.org/10.1007/978-3-030-93733-1_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-93733-1_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93732-4
Online ISBN: 978-3-030-93733-1
eBook Packages: Computer ScienceComputer Science (R0)