Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

L1-Regularized Neural Ranking for Risk Stratification and Its Application to Prediction of Time to Distant Metastasis in Luminal Node Negative Chemotherapy Naïve Breast Cancer Patients

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021)

Abstract

Can we predict if an early stage cancer patient is at high risk of developing distant metastasis and what clinicopathological factors are associated with such a risk?” In this paper, we propose a ranking based censoring-aware machine learning model for answering such questions. The proposed model is able to generate an interpretable formula for risk stratification using a minimal number of clinicopathological covariates through L1-regulrization. Using this approach, we analyze the association of time to distant metastasis (TTDM) with various clinical parameters for early stage, luminal (ER + /HER2-) breast cancer patients who received endocrine therapy but no chemotherapy (n = 728). The TTDM risk stratification formula obtained using the proposed approach is primarily based on mitotic score, histological tumor type and lymphovascular invasion. These findings corroborate with the known role of these covariates in increased risk for distant metastasis. Our analysis shows that the proposed risk stratification formula can discriminate between cases with high and low risk of distant metastasis (p-value < 0.005) and can also rank cases based on their time to distant metastasis with a concordance-index of 0.73.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Machin, D., Cheung, Y.B., Parmar, M.: Survival Analysis: A Practical Approach, 2nd ed. Chichester, England; Hoboken, NJ, Wiley (2006)

    Google Scholar 

  2. Emmerson, J., Brown, J.M.: Understanding survival analysis in clinical trials. Clin. Oncol. 33(1), 12–14 (2021). https://doi.org/10.1016/j.clon.2020.07.014

    Article  Google Scholar 

  3. Collett, D.: Modelling Survival Data in Medical Research, 2nd edition. Boca Raton, Fla: Chapman and Hall/Crc (2003)

    Google Scholar 

  4. Ma, J., Hobbs, B.P., Stingo, F.C.: Statistical methods for establishing personalized treatment rules in oncology. BioMed Res. Int. 2015, e670691 (2015). https://doi.org/10.1155/2015/670691

    Article  Google Scholar 

  5. Rossi, A., Torri, V., Garassino, M.C., Porcu, L., Galetta, D.: The impact of personalized medicine on survival: comparisons of results in metastatic breast, colorectal and non-small-cell lung cancers. Cancer Treat. Rev. 40(4), 485–494 (2014). https://doi.org/10.1016/j.ctrv.2013.09.012

    Article  Google Scholar 

  6. Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B Methodol. 34(2), 187–220 (1972)

    MathSciNet  MATH  Google Scholar 

  7. Witten, D.M., Tibshirani, R.: Survival analysis with high-dimensional covariates. Stat. Methods Med. Res. 19(1), 29–51 (2010). https://doi.org/10.1177/0962280209105024

    Article  MathSciNet  Google Scholar 

  8. Khan, F.M., Zubek, V.B.: Support vector regression for censored data (SVRc): a novel tool for survival analysis. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 863–868 (2008). https://doi.org/10.1109/ICDM.2008.50

  9. Pölsterl, S., Navab, N., Katouzian, A.: Fast training of support vector machines for survival analysis. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 243–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_15

    Chapter  Google Scholar 

  10. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18(1), 24 (2018). https://doi.org/10.1186/s12874-018-0482-1

    Article  Google Scholar 

  11. Di, D., Li, S., Zhang, J., Gao, Y.: Ranking-based survival prediction on histopathological whole-slide images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 428–438. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_41

    Chapter  Google Scholar 

  12. Wulczyn, E., et al.: Deep learning-based survival prediction for multiple cancer types using histopathology images. ArXiv191207354 Cs Eess Q-Bio (2019). http://arxiv.org/abs/1912.07354. Accessed 22 Dec 2019

  13. Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph CNN for survival analysis on whole slide pathological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_20

    Chapter  Google Scholar 

  14. Zhao, L., Feng, D.: DNNSurv: deep neural networks for survival analysis using pseudo values. ArXiv190802337 Cs Stat, (2020). http://arxiv.org/abs/1908.02337. Accessed 22 Jun 2021

  15. Kvamme, H., Borgan, Ø., Scheel, I.: Time-to-event prediction with neural networks and cox regression. J. Mach. Learn. Res. 20(129), 1–30 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Lee, C., Zame, W., Yoon, J., van der Schaar, M.: DeepHit: a deep learning approach to survival analysis with competing risks. Proc. AAAI Conf. Artif. Intell. 32(1), Art. no. 1 (2018). https://ojs.aaai.org/index.php/AAAI/article/view/11842. Accessed 2 Jul 2021

  17. Gensheimer, M.F., Narasimhan, B.: A scalable discrete-time survival model for neural networks (2018). https://doi.org/10.7717/peerj.6257

  18. Fotso, S.: Deep Neural Networks for Survival Analysis Based on a Multi-Task Framework. ArXiv180105512 Cs Stat, (2018). http://arxiv.org/abs/1801.05512. Accessed 30 Apr 2021

  19. Utkin, L.V., Kovalev, M.S., Kasimov, E.M.: SurvLIME-Inf: a simplified modification of SurvLIME for explanation of machine learning survival models (2020). https://arxiv.org/abs/2005.02387v1. Accessed 02 Jul 2021

  20. Rakha, E.A., et al.: Prognostic stratification of oestrogen receptor-positive HER2-negative lymph node-negative class of breast cancer. Histopathology 70(4), 622–631 (2017). https://doi.org/10.1111/his.13108

    Article  Google Scholar 

  21. Makower, D., Lin, J., Xue, X., Sparano, J.A.: Lymphovascular invasion, race, and the 21-gene recurrence score in early estrogen receptor-positive breast cancer. NPJ Breast Cancer 7(1), 1–7 (2021). https://doi.org/10.1038/s41523-021-00231-x

    Article  Google Scholar 

  22. Ignatiadis, M., Sotiriou, C.: Luminal breast cancer: from biology to treatment. Nat. Rev. Clin. Oncol. 10(9), 494–506 (2013). https://doi.org/10.1038/nrclinonc.2013.124

    Article  Google Scholar 

  23. Goldberg, J., et al.: The immunology of hormone receptor positive breast cancer. Front. Immunol., 12, 674192 (2021). https://doi.org/10.3389/fimmu.2021.674192

  24. Bland, J.M., Altman, D.G.: The logrank test. BMJ 328(7447), 1073 (2004)

    Article  Google Scholar 

  25. Romano, J.P., DiCiccio, C.: Multiple Data Splitting for testing. Technical Report No. 2019–03, Stanford University. https://statistics.stanford.edu/sites/g/files/sbiybj6031/f/2019-03.pdf

  26. Raykar, V.C., Steck, H., Krishnapuram, B., Dehing-Oberije, C., Lambin, P.: On ranking in survival analysis: bounds on the concordance index. In: Proceedings of the 20th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, pp. 1209–1216 (2007)

    Google Scholar 

  27. Duraker, N., Hot, S., Akan, A., Nayır, P.Ö.: A comparison of the clinicopathological features, metastasis sites and survival outcomes of invasive lobular, invasive ductal and mixed invasive ductal and lobular breast carcinoma. Eur. J. Breast Health 16(1), 22–31 (2020). https://doi.org/10.5152/ejbh.2019.5004

    Article  Google Scholar 

  28. Lobbezoo, D., et al.: The role of histological subtype in hormone receptor positive metastatic breast cancer: similar survival but different therapeutic approaches. Oncotarget 7(20), 29412–29419 (2016). https://doi.org/10.18632/oncotarget.8838

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayyaz Minhas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Minhas, F., Toss, M.S., ul Wahab, N., Rakha, E., Rajpoot, N.M. (2021). L1-Regularized Neural Ranking for Risk Stratification and Its Application to Prediction of Time to Distant Metastasis in Luminal Node Negative Chemotherapy Naïve Breast Cancer Patients. In: Kamp, M., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol 1525. Springer, Cham. https://doi.org/10.1007/978-3-030-93733-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93733-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93732-4

  • Online ISBN: 978-3-030-93733-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics