Abstract
High dimensional data clustering faced some problems such as sparse samples, difficulty in calculating similarity and so on. In addition, the clustering results sometimes be extremely unbalanced with too many or too few category samples. Therefore, we propose a novel algorithm, that is a balanced spectral clustering algorithm based on feature selection. Firstly, the least square method is used to calculate the target loss error. Secondly, the method of feature selection is used to reduce the influence of noise and redundant features. Thirdly, a balanced regularization term exclusive lasso is introduced to balance the clustering results. Finally, the locality preserving projection is used to maintain the feature structure of the samples. A large number of experimental results show that the proposed algorithm outperformed the comparison algorithms on the two indicators (accuracy and normal mutual information) in most cases, which proves the effectiveness of the proposed spectral clustering algorithm.
This work is partially supported by the Project of Guangxi Science and Technology (GuiKeAD20159041); the Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (No. 20-A-01-01); the Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (MIMS20-M-01), the Innovation Project of Guangxi Graduate Education (No. YCSW2021095, No. JXXYYJSCXXM-2021-010).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, X., Hong, W., Nie, F., Huang, J.Z., Shen, L.: Enhanced balanced min cut. Int. J. Comput. Vis. 128(7), 1982–1995 (2020)
Chen, X., Zhexue Haung, J., Nie, F., Chen, R., Wu, Q.: A self-balanced min-cut algorithm for image clustering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2061–2069 (2017)
Du, T., Wen, G., Cai, Z., Zheng, W., Tan, M., Li, Y.: Spectral clustering algorithm combining local covariance matrix with normalization. Neural Comput. Appl. 32(11), 6611–6618 (2018). https://doi.org/10.1007/s00521-018-3852-z
Gan, J., Peng, Z., Zhu, X., Hu, R., Ma, J., Wu, G.: Brain functional connectivity analysis based on multi-graph fusion. Med. Image Anal. 71, 102057 (2021)
Guo, Y., Wu, Z., Shen, D.: Learning longitudinal classification-regression model for infant hippocampus segmentation. Neurocomputing 391, 191–198 (2020)
Hartigan, J.A., Wong, M.A.: Algorithm as 136:a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)
Hu, R., et al.: Multi-band brain network analysis for functional neuroimaging biomarker identification. IEEE Trans. Med. Imaging 40, 3843–3855 (2021)
Hu, R., Zhu, X., Zhu, Y., Gan, J.: Robust SVM with adaptive graph learning. World Wide Web 23(3), 1945–1968 (2020)
Huang, D., Wang, C.D., Wu, J.S., Lai, J.H., Kwoh, C.K.: Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans. Knowl. Data Eng. 32(6), 1212–1226 (2019)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc., Upper Saddle River (1988)
Kang, Z., et al.: Partition level multiview subspace clustering. Neural Netw. 122, 279–288 (2020)
Li, Z., Nie, F., Chang, X., Ma, Z., Yang, Y.: Balanced clustering via exclusive lasso: A pragmatic approach. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Liu, H., Han, J., Nie, F., Li, X.: Balanced clustering with least square regression. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Lucińska, M.: A spectral clustering algorithm based on eigenvector localization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 749–759. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_65
Luo, Q., Wen, G., Zhang, L., Zhan, M.: An efficient algorithm combining spectral clustering with feature selection. Neural Process. Lett. 52(3), 1913–1925 (2020)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)
Nie, F., Wang, C.L., Li, X.: K-multiple-means: a multiple-means clustering method with specified k clusters. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 959–967 (2019)
Nie, F., Wang, X., Jordan, M.I., Huang, H.: The constrained Laplacian rank algorithm for graph-based clustering. In: AAAI, pp. 1969–1976. Citeseer (2016)
Nie, F., Zhang, R., Li, X.: A generalized power iteration method for solving quadratic problem on the Stiefel manifold. Sci. China Inf. Sci. 60(11), 112101 (2017)
Shen, H.T., et al.: Heterogeneous data fusion for predicting mild cognitive impairment conversion. Inf. Fusion 66, 54–63 (2021)
Shen, H.T., Zhu, Y., Zheng, W., Zhu, X.: Half-quadratic minimization for unsupervised feature selection on incomplete data. IEEE Trans. Neural Netw. Learn. Syst. 32, 3122–3135 (2020)
Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
Xie, G., et al.: SRSC: selective, robust, and supervised constrained feature representation for image classification. IEEE Trans. Neural Networks Learn. Syst. 31(10), 4290–4302 (2020)
Yang, Y., Duan, Y., Wang, X., Huang, Z., Xie, N., Shen, H.T.: Hierarchical multi-clue modelling for poi popularity prediction with heterogeneous tourist information. IEEE Trans. Knowl. Data Eng. 31(4), 757–768 (2018)
Yuan, C., Zhong, Z., Lei, C., Zhu, X., Hu, R.: Adaptive reverse graph learning for robust subspace learning. Inf. Process. Manage. 58(6), 102733 (2021)
Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D.: Learning K for KNN classification. ACM Trans. Intell. Syst. Technol. (TIST) 8(3), 1–19 (2017)
Zhang, Y., Zhao, Q., Jin, J., Wang, X., Cichocki, A.: A novel BCI based on ERP components sensitive to configural processing of human faces. J. Neural Eng. 9(2), 26018 (2012)
Zhang, Z., Liu, L., Shen, F., Shen, H.T., Shao, L.: Binary multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1774–1782 (2018)
Zhou, Y., Tian, L., Zhu, C., Jin, X., Sun, Y.: Video coding optimization for virtual reality 360-degree source. IEEE J. Sel. Top. Sig. Process. 14(1), 118–129 (2019)
Zhu, X., Gan, J., Lu, G., Li, J., Zhang, S.: Spectral clustering via half-quadratic optimization. World Wide Web 23(3), 1969–1988 (2019). https://doi.org/10.1007/s11280-019-00731-8
Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybern. 46(2), 450–461 (2016)
Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1263–1275 (2017)
Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph PCA hashing for similarity search. IEEE Trans. Multimedia 19(9), 2033–2044 (2017)
Zhu, X., et al.: Joint prediction and time estimation of COVID-19 developing severe symptoms using chest CT scan. Med. Image Anal. 67, 101824 (2021)
Zhu, X., Yang, J., Zhang, C., Zhang, S.: Efficient utilization of missing data in cost-sensitive learning. IEEE Trans. Knowl. Data Eng. 33, 2425–2436 (2019)
Zhu, X., Zhang, S., Li, Y., Zhang, J., Yang, L., Fang, Y.: Low-rank sparse subspace for spectral clustering. IEEE Trans. Knowl. Data Eng. 31(8), 1532–1543 (2018)
Zhu, X., Zhang, S., Zhu, Y., Zhu, P., Gao, Y.: Unsupervised spectral feature selection with dynamic hyper-graph learning. IEEE Trans. Knowl. Data Eng., 1 (2020)
Zhu, X., Zhu, Y., Zheng, W.: Spectral rotation for deep one-step clustering. Pattern Recogn. 105, 107175 (2020)
Zhu, Y., Ma, J., Yuan, C., Zhu, X.: Interpretable learning based dynamic graph convolutional networks for Alzheimer’s disease analysis. Inf. Fusion 77, 53–61 (2022)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Luo, Q., Lu, G., Wen, G., Su, Z., Liu, X., Wei, J. (2022). Balanced Spectral Clustering Algorithm Based on Feature Selection. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13088. Springer, Cham. https://doi.org/10.1007/978-3-030-95408-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-95408-6_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95407-9
Online ISBN: 978-3-030-95408-6
eBook Packages: Computer ScienceComputer Science (R0)