Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Count Me In! Extendability for Threshold Ring Signatures

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2022 (PKC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13178))

Included in the following conference series:

  • 1257 Accesses

Abstract

Ring signatures enable a signer to sign a message on behalf of a group anonymously, without revealing her identity. Similarly, threshold ring signatures allow several signers to sign the same message on behalf of a group; while the combined signature reveals that some threshold \(t \) of the group members signed the message, it does not leak anything else about the signers’ identities. Anonymity is a central feature in threshold ring signature applications, such as whistleblowing, e-voting and privacy-preserving cryptocurrencies: it is often crucial for signers to remain anonymous even from their fellow signers. When the generation of a signature requires interaction, this is difficult to achieve. There exist threshold ring signatures with non-interactive signing—where signers locally produce partial signatures which can then be aggregated—but a limitation of existing threshold ring signature constructions is that all of the signers must agree on the group on whose behalf they are signing, which implicitly assumes some coordination amongst them. The need to agree on a group before generating a signature also prevents others—from outside that group—from endorsing a message by adding their signature to the statement post-factum.

We overcome this limitation by introducing extendability for ring signatures, same-message linkable ring signatures, and threshold ring signatures. Extendability allows an untrusted third party to take a signature, and extend it by enlarging the anonymity set to a larger set. In the extendable threshold ring signature, two signatures on the same message which have been extended to the same anonymity set can then be combined into one signature with a higher threshold. This enhances signers’ anonymity, and enables new signers to anonymously support a statement already made by others.

For each of those primitives, we formalize the syntax and provide a meaningful security model which includes different flavors of anonymous extendability. In addition, we present concrete realizations of each primitive and formally prove their security relying on signatures of knowledge and the hardness of the discrete logarithm problem. We also describe a generic transformation to obtain extendable threshold ring signatures from same-message-linkable extendable ring signatures. Finally, we implement and benchmark our constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The ring \(\mathcal {R}\) should of course contain the signer’s identity.

  2. 2.

    https://github.com/relic-toolkit/relic

References

  1. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_4

    Chapter  Google Scholar 

  2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)

    Article  Google Scholar 

  3. Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_3

    Chapter  Google Scholar 

  4. Beullens, W., Katsumata, S., Pintore, F.: Calamari and falafl: logarithmic (linkable) ring signatures from isogenies and lattices. Cryptology ePrint Archive, Report 2020/646 (2020). https://eprint.iacr.org/2020/646

  5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26

    Chapter  Google Scholar 

  6. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_13

    Chapter  Google Scholar 

  7. Bose, P., Das, D., Rangan, C.P.: Constant size ring signature without random oracle. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 230–247. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7_14

    Chapter  Google Scholar 

  8. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_30

    Chapter  Google Scholar 

  9. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri, V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, pp. 132–145. ACM Press (2004)

    Google Scholar 

  10. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_38

    Chapter  Google Scholar 

  11. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_5

    Chapter  Google Scholar 

  12. Chow, S.S.M., Wei, V.K.W., Liu, J.K., Yuen, T.H.: Ring signatures without random oracles. In: Lin, F.C., Lee, D.T., Lin, B.S., Shieh, S., Jajodia, S. (eds.) ASIACCS 2006, pp. 297–302. ACM Press (2006)

    Google Scholar 

  13. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_36

    Chapter  MATH  Google Scholar 

  14. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_4

    Chapter  MATH  Google Scholar 

  15. Haque, A., Scafuro, A.: Threshold ring signatures: new definitions and post-quantum security. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 423–452. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_15

    Chapter  Google Scholar 

  16. Liu, J.K.: Ring signature. In: Li, K.-C., Chen, X., Susilo, W. (eds.) Advances in Cyber Security: Principles, Techniques, and Applications, pp. 93–114. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1483-4_5

    Chapter  Google Scholar 

  17. Liu, J.K., Wong, D.S.: On the security models of (threshold) ring signature schemes. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 204–217. Springer, Heidelberg (2005). https://doi.org/10.1007/11496618_16

    Chapter  Google Scholar 

  18. Liu, Z., Nguyen, K., Yang, G., Wang, H., Wong, D.S.: A lattice-based linkable ring signature supporting stealth addresses. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 726–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_35

    Chapter  Google Scholar 

  19. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring signature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_6

    Chapter  Google Scholar 

  20. Malavolta, G., Schröder, D.: Efficient ring signatures in the standard model. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 128–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_5

    Chapter  MATH  Google Scholar 

  21. Melchor, C.A., Cayrel, P.L., Gaborit, P., Laguillaumie, F.: A new efficient threshold ring signature scheme based on coding theory. IEEE Trans. Inf. Theory 57(7), 4833–4842 (2011)

    Article  MathSciNet  Google Scholar 

  22. Munch-Hansen, A., Orlandi, C., Yakoubov, S.: Stronger notions and a more efficient construction of threshold ring signatures. Cryptology ePrint Archive, Report 2020/678 (2020). https://eprint.iacr.org/2020/678

  23. Okamoto, T., Tso, R., Yamaguchi, M., Okamoto, E.: A \(k\)-out-of-\(n\) ring signature with flexible participation for signers. Cryptology ePrint Archive, Report 2018/728 (2018). https://eprint.iacr.org/2018/728

  24. Patachi, Ş, Schürmann, C.: Eos a universal verifiable and coercion resistant voting protocol. In: Krimmer, R., Volkamer, M., Braun Binder, N., Kersting, N., Pereira, O., Schürmann, C. (eds.) E-Vote-ID 2017. LNCS, vol. 10615, pp. 210–227. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68687-5_13

    Chapter  Google Scholar 

  25. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  26. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_12

    Chapter  Google Scholar 

  27. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_25

    Chapter  Google Scholar 

  28. Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable linkable threshold ring signatures. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 384–398. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30556-9_30

    Chapter  Google Scholar 

  29. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Threshold ring signature without random oracles. In: Cheung, B.S.N., Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.) ASIACCS 2011, pp. 261–267. ACM Press (2011)

    Google Scholar 

  30. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_33

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially funded by ELLIIT; the Swedish Foundation for Strategic Research grant RIT17-0035; the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No 803096 (SPEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego F. Aranha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aranha, D.F., Hall-Andersen, M., Nitulescu, A., Pagnin, E., Yakoubov, S. (2022). Count Me In! Extendability for Threshold Ring Signatures. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13178. Springer, Cham. https://doi.org/10.1007/978-3-030-97131-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97131-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97130-4

  • Online ISBN: 978-3-030-97131-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics