Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ring Signatures of Sub-linear Size Without Random Oracles

  • Conference paper
Automata, Languages and Programming (ICALP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4596))

Included in the following conference series:

Abstract

Ring signatures, introduced by Rivest, Shamir and Tauman, enable a user to sign a message anonymously on behalf of a “ring”. A ring is a group of users, which includes the signer. We propose a ring signature scheme that has size \(\mathcal{O}(\sqrt N)\) where N is the number of users in the ring. An additional feature of our scheme is that it has perfect anonymity.

Our ring signature like most other schemes uses the common reference string model. We offer a variation of our scheme, where the signer is guaranteed anony- mity even if the common reference string is maliciously generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Google Scholar 

  2. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

    Google Scholar 

  4. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Boyen, X.: Mesh signatures. In: Advances in Cryptology—EUROCRYPT 2007. LNCS, vol. 4515, pp. 210–227. Springer, Heidelberg (2007), available at http://www.cs.stanford.edu/~xb/eurocrypt07b/

    Chapter  Google Scholar 

  6. Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Chow, S.S.M., Wei, V.K., Liu, J.K., Yuen, T.H.: Ring Signatures without Random Oracles. In: ASIACCS 2006. Proceedings of the 2006 ACM Symposium on Information, Taipei, Taiwan. Computer and Communications Security, pp. 297–302. ACM Press, New York (2006)

    Chapter  Google Scholar 

  8. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

    Google Scholar 

  9. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero-knowledge for np. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Groth, J., Sahai, A.: Efficient non-interactive proofs for bilinear groups. Manuscript (2006)

    Google Scholar 

  11. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)

    Google Scholar 

  12. Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987)

    Article  MathSciNet  Google Scholar 

  13. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret: Theory and applications of ring signatures. In: Essays in Memory of Shimon Even (2006)

    Google Scholar 

  15. Shacham, H., Waters, B.: Efficient ring signatures without random oracles (2006), available at http://eprint.iacr.org/2006/289.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Christian Cachin Tomasz Jurdziński Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandran, N., Groth, J., Sahai, A. (2007). Ring Signatures of Sub-linear Size Without Random Oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73420-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73419-2

  • Online ISBN: 978-3-540-73420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics