Abstract
Ring signatures, introduced by Rivest, Shamir and Tauman, enable a user to sign a message anonymously on behalf of a “ring”. A ring is a group of users, which includes the signer. We propose a ring signature scheme that has size \(\mathcal{O}(\sqrt N)\) where N is the number of users in the ring. An additional feature of our scheme is that it has perfect anonymity.
Our ring signature like most other schemes uses the common reference string model. We offer a variation of our scheme, where the signer is guaranteed anony- mity even if the common reference string is maliciously generated.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)
Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)
Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)
Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)
Boyen, X.: Mesh signatures. In: Advances in Cryptology—EUROCRYPT 2007. LNCS, vol. 4515, pp. 210–227. Springer, Heidelberg (2007), available at http://www.cs.stanford.edu/~xb/eurocrypt07b/
Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)
Chow, S.S.M., Wei, V.K., Liu, J.K., Yuen, T.H.: Ring Signatures without Random Oracles. In: ASIACCS 2006. Proceedings of the 2006 ACM Symposium on Information, Taipei, Taiwan. Computer and Communications Security, pp. 297–302. ACM Press, New York (2006)
Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)
Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero-knowledge for np. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)
Groth, J., Sahai, A.: Efficient non-interactive proofs for bilinear groups. Manuscript (2006)
Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)
Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987)
Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002)
Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret: Theory and applications of ring signatures. In: Essays in Memory of Shimon Even (2006)
Shacham, H., Waters, B.: Efficient ring signatures without random oracles (2006), available at http://eprint.iacr.org/2006/289.pdf
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chandran, N., Groth, J., Sahai, A. (2007). Ring Signatures of Sub-linear Size Without Random Oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-540-73420-8_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73419-2
Online ISBN: 978-3-540-73420-8
eBook Packages: Computer ScienceComputer Science (R0)