Abstract
Ring signatures allow a user to sign messages on behalf of an ad hoc set of users - a ring - while hiding her identity. The original motivation for ring signatures was whistleblowing [Rivest et al. ASIACRYPT’01]: a high government employee can anonymously leak sensitive information while certifying that it comes from a reliable source, namely by signing the leak. However, essentially all known ring signature schemes require the members of the ring to publish a structured verification key that is compatible with the scheme. This creates somewhat of a paradox since, if a user does not want to be framed for whistleblowing, they will stay clear of signature schemes that support ring signatures.
In this work, we formalize the concept of universal ring signatures (URS). A URS enables a user to issue a ring signature with respect to a ring of users, independently of the signature schemes they are using. In particular, none of the verification keys in the ring need to come from the same scheme. Thus, in principle, URS presents an effective solution for whistleblowing.
The main goal of this work is to study the feasibility of URS, especially in the standard model (i.e. no random oracles or common reference strings). We present several constructions of URS, offering different trade-offs between assumptions required, the level of security achieved, and the size of signatures:
-
Our first construction is based on superpolynomial hardness assumptions of standard primitives. It achieves compact signatures. That means the size of a signature depends only logarithmically on the size of the ring and on the number of signature schemes involved.
-
We then proceed to study the feasibility of constructing URS from standard polynomially-hard assumptions only. We construct a non-compact URS from witness encryption and additional standard assumptions.
-
Finally, we show how to modify the non-compact construction into a compact one by relying on indistinguishability obfuscation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The term universal ring signatures was also used in [36] to refer to a completely different property of ring signatures.
- 2.
For example, one of the verification keys can be from an SIS-based signature scheme and another from a group-based signature scheme.
- 3.
- 4.
Examples of such PKE schemes exist from the LWE or DDH assumption.
- 5.
In our case, the special mode is when keys are malformed.
- 6.
To make the circuit size independent of N, we use a pseudorandom function (PRF) to succinctly describe all the \(r_i\). This PRF has to be puncturable in order to use the puncturing technique of [34].
- 7.
This time we use SSB in its statistically binding form.
- 8.
Observe that the obfuscated circuit receives as input an index i, a statement \(x_i\) and an SSB proof \(\gamma _i\).
- 9.
- 10.
In practice, keys/certificates are usually annoted with their respective schemes and we assume such a labelling here.
- 11.
Note that, in the unforgeability definition for standard ring signatures in [5] a similar situation happens: The forge of the adversary must be with respect to verification keys created honestly and not with respect to maliciously chosen verification keys.
- 12.
Note that as the key generation algorithms are publicly available, the adversary may honestly generate key pairs itself. The corruption oracle simply serves to corrupt the initial honest keys. Arbitrary additional adversarially chosen keys can be included in ring signature queries, as we do not require \(\bar{R}\subseteq R\).
- 13.
We can consider the stronger notion, where a forge is valid, if no query of the form \(\texttt{URSSign}(m^*,R^*,\cdot ,\cdot )\) or \(\texttt{Sign}(m^*||R^*,i)\) for \(\textsf{vk}_i\in R^*\) was made. This can be achieved by the standard trick of signing the message \((m^*||R^*)\) instead of \(m^*\) or a hash \(H(m^*||R^*)\) thereof for compactness.
- 14.
We assume that for all schemes, \(|\mathsf {Sig.Verify}|\) is bounded by a polynomial \(\beta (\lambda )\).
- 15.
This holds, as we assumed, that we can bound \(|\textsf{Sig}.\textsf{Verify}|\) by a polynomial \(\beta (\lambda )\) for all signature schemes \(\textsf{Sig}\).
- 16.
We assume again, that for all schemes, \(|\mathsf {Sig.Verify}|\) is bounded by a polynomial \(b(\lambda )\).
References
Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_26
Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_15
Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures: logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 281–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_10
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93: 1st Conference on Computer and Communications Security, pp. 62–73. ACM Press, Fairfax (1993)
Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_4
Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual ACM Symposium on Theory of Computing, pp. 439–448. ACM Press, Portland (2015)
Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Guruswami, V. (ed.) 56th Annual Symposium on Foundations of Computer Science, pp. 171–190. IEEE Computer Society Press, Berkeley (2015)
Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, pp. 103–112. ACM Press, Chicago (1988)
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26
Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15
Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 210–227. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_12
Brakerski, Z., Koppula, V., Mour, T.: NIZK from LPN and trapdoor hash via correlation intractability for approximable relations. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 738–767. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_26
Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_2
Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_36
Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: 31st Annual Symposium on Foundations of Computer Science, pp. 308–317. IEEE Computer Society Press, St. Louis (1990)
Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_10
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual Symposium on Foundations of Computer Science, pp. 40–49. IEEE Computer Society Press, Berkeley (2013)
Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of Computing, pp. 467–476. ACM Press, Palo Alto (2013)
Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_27
Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_36
Garg, S., Srinivasan, A.: A Simple Construction of iO for Turing Machines. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 425–454. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_16
Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: a framework to compose \(\sigma \)-protocols for disjunctions. Cryptology ePrint Archive, Report 2021/422 (2021). https://ia.cr/2021/422
Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994)
Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: 44th Annual Symposium on Foundations of Computer Science, pp. 102–115. IEEE Computer Society Press, Cambridge (2003)
Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_21
Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 3–34. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_1
Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: Roughgarden, T. (ed.) ITCS 2015: 6th Conference on Innovations in Theoretical Computer Science, pp. 163–172. Association for Computing Machinery, Rehovot (2015)
Jain, A., Jin, Z.: Non-interactive Zero Knowledge from Sub-exponential DDH. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_1
Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018, Part II. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1_15
Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere statistically binding hashing and positional accumulators. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 121–145. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_6
Park, S., Sealfon, A.: It wasn’t me! - repudiability and claimability of ring signatures. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 159–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_6
Peikert, C., Shiehian, S.: Noninteractive zero knowledge for np from (plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory of Computing, pp. 475–484. ACM Press, New York (2014)
Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_12
Tso, R.: A new way to generate a ring: Universal ring signature. Comput. Math. Appl. 65(9), 1350–1359 (2013). https://www.sciencedirect.com/science/article/pii/S0898122112000491. Advanced Information Security
Acknowledgments
Nico Döttling: Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them (ERC-2021-STG 101041207 LACONIC).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Branco, P., Döttling, N., Wohnig, S. (2022). Universal Ring Signatures in the Standard Model. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13794. Springer, Cham. https://doi.org/10.1007/978-3-031-22972-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-22972-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22971-8
Online ISBN: 978-3-031-22972-5
eBook Packages: Computer ScienceComputer Science (R0)