Abstract
Ring signatures allow for creating signatures on behalf of an ad hoc group of signers, hiding the true identity of the signer among the group. A natural goal is to construct a ring signature scheme for which the signature size is short in the number of ring members. Moreover, such a construction should not rely on a trusted setup and be proven secure under falsifiable standard assumptions. Despite many years of research this question is still open.
In this paper, we present the first construction of size-optimal ring signatures which do not rely on a trusted setup or the random oracle heuristic. Specifically, our scheme can be instantiated from standard assumptions and the size of signatures grows only logarithmically in the number of ring members.
We also extend our techniques to the setting of linkable ring signatures, where signatures created using the same signing key can be linked.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Bender et al. [6] actually use 2-message public-coin witness-indistinguishable proofs (ZAPs) rather than NIWI proofs, which is a slightly weaker primitive than NIWI proofs.
- 2.
E.g. in the construction of IND-CCA secure encryption schemes.
- 3.
The expression can be unrolled into a disjunction of \(6 \cdot \left( {5 \atopwithdelims ()2} + {5 \atopwithdelims ()3} \right) = 480\) clauses, where each clause is a conjunction of 5 statements.
References
Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_26
Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures: logarithmic-size, no setup – from standard assumptions. Cryptology ePrint Archive, Report 2019/196 (2019). http://eprint.iacr.org/2019/196
Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with flexible public key: introducing equivalence classes for public keys. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 405–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_14
Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_18
Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable ring signatures. Cryptology ePrint Archive, Report 2018/107 (2018). https://eprint.iacr.org/2018/107
Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_4
Bitansky, N.: Verifiable random functions from non-interactive witness-indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_19
Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_16
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26
Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 210–227. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_12
Boyen, X., Haines, T.: Forward-secure linkable ring signatures. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 245–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_15
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd Annual Symposium on Foundations of Computer Science, Palm Springs, CA, USA, 22–25 October 2011, pp. 97–106. IEEE Computer Society Press (2011)
Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_38
Chow, S.S.M., Wei, V.K.-W., Liu, J.K., Yuen, T.H.: Ring signatures without random oracles. In: Lin, F.-C., Lee, D.-T., Lin, B.-S., Shieh, S., Jajodia, S. (eds.) 1st ACM Symposium on Information, Computer and Communications Security, ASIACCS 2006, 21–24 March 2006, Taipei, Taiwan, pp. 297–302. ACM Press (2006)
Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_36
Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: 23rd Annual ACM Symposium on Theory of Computing, 6–8 May 1991, New Orleans, LA, USA, pp. 542–552. ACM Press (1991)
Dwork, C., Naor, M.: Zaps and their applications. In: 41st Annual Symposium on Foundations of Computer Science, 12–14 November 2000, Redondo Beach, CA, USA, pp. 283–293. IEEE Computer Society Press (2000)
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing, 31 May–2 June 2009, Bethesda, MD, USA, pp. 169–178. ACM Press (2009)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Ghadafi, E.M.: Sub-linear blind ring signatures without random oracles. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 304–323. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0_18
Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st Annual ACM Symposium on Theory of Computing, 15–17 May 1989, Seattle, WA, USA, pp. 25–32. ACM Press (1989)
González, A.: A ring signature of size \({O}(\root 3 \of {n})\) without random oracles. Cryptology ePrint Archive, Report 2017/905 (2017). http://eprint.iacr.org/2017/905
Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to constructing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_18
Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6
Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-7_20
Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: Roughgarden, T. (ed.) 6th Conference on Innovations in Theoretical Computer Science, ITCS 2015, 11–13 January 2015, Rehovot, Israel, pp. 163–172. Association for Computing Machinery (2015)
Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1_15
Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28
Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring signature. Cryptology ePrint Archive, Report 2018/857 (2018). https://eprint.iacr.org/2018/857
Malavolta, G., Schröder, D.: Efficient ring signatures in the standard model. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 128–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_5
Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint Archive, Report 2015/1098 (2015). http://eprint.iacr.org/2015/1098
Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere statistically binding hashing and positional accumulators. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 121–145. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_6
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory of Computing, 22–24 May 2005, Baltimore, MA, USA, pp. 84–93. ACM Press (2005)
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Schäge, S., Schwenk, J.: A CDH-based ring signature scheme with short signatures and public keys. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 129–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_12
Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22
Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_12
Torres, W.A.A., et al.: Post-quantum one-time linkable ring signature and application to ring confidential transactions in blockchain (lattice RingCT v1.0). In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_32
Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: Deng, R.H., Bao, F., Pang, H.H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31979-5_5
Acknowledgments
This work has been partially funded/supported by the German Ministry for Education and Research through funding for the project CISPA-Stanford Center for Cybersecurity (Funding numbers: 16KIS0762 and 16KIS0927).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J. (2019). Ring Signatures: Logarithmic-Size, No Setup—from Standard Assumptions. In: Ishai, Y., Rijmen, V. (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT 2019. Lecture Notes in Computer Science(), vol 11478. Springer, Cham. https://doi.org/10.1007/978-3-030-17659-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-17659-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17658-7
Online ISBN: 978-3-030-17659-4
eBook Packages: Computer ScienceComputer Science (R0)