Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Jitterbug: A New Framework for Jitter-Based Congestion Inference

  • Conference paper
  • First Online:
Passive and Active Measurement (PAM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13210))

Included in the following conference series:

  • 2124 Accesses

Abstract

We investigate a novel approach to the use of jitter to infer network congestion using data collected by probes in access networks. We discovered a set of features in jitter and jitter dispersion —a jitter-derived time series we define in this paper—time series that are characteristic of periods of congestion. We leverage these concepts to create a jitter-based congestion inference framework that we call Jitterbug. We apply Jitterbug’s capabilities to a wide range of traffic scenarios and discover that Jitterbug can correctly identify both recurrent and one-off congestion events. We validate Jitterbug inferences against state-of-the-art autocorrelation-based inferences of recurrent congestion. We find that the two approaches have strong congruity in their inferences, but Jitterbug holds promise for detecting one-off as well as recurrent congestion. We identify several future directions for this research including leveraging ML/AI techniques to optimize performance and accuracy of this approach in operational settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Jitterbug repository: https://github.com/estcarisimo/jitterbug.

  2. 2.

    We referred as near and far sides to consecutive IP pairs in a traceroute path following the convention defined by Luckie et al. [23].

  3. 3.

    Implementation of Xuan et al. change point detection algorithm: https://github.com/hildensia/bayesian_changepoint_detection.

  4. 4.

    One day has 96 periods of 15 min.

References

  1. Archipelago measurement infrastructure updates. https://catalog.caida.org/details/media/2011_archipelago. Accessed 30 Sept 2021

  2. Manic. https://catalog.caida.org/details/software/manic. Accessed 13 Oct 2021

  3. Adams, R.P., MacKay, D.J.: Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742 (2007)

  4. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2016). https://doi.org/10.1007/s10115-016-0987-z

    Article  Google Scholar 

  5. Appenzeller, G., Keslassy, I., McKeown, N.: Sizing router buffers. ACM SIGCOMM Comput. Commun. Rev. 34(4), 281–292 (2004)

    Article  Google Scholar 

  6. ARUNO: ADTK Detectors (2021). https://arundo-adtk.readthedocs-hosted.com/en/stable/api/detectors.html

  7. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: congestion-based congestion control: measuring bottleneck bandwidth and round-trip propagation time. Queue 14(5), 20–53 (2016)

    Article  Google Scholar 

  8. Carlucci, G., De Cicco, L., Mascolo, S.: HTTP over UDP: an experimental investigation of QUIC. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 609–614 (2015)

    Google Scholar 

  9. Davisson, L., Jakovleski, J., Ngo, N., Pham, C., Sommers, J.: Reassessing the constancy of end-to-end internet latency. In: Proceedings of IFIP TMA (2021)

    Google Scholar 

  10. Demichelis, C., Chimento, P.: RFC 3393: IP packet delay variation metric for IP performance metrics (IPPM) (2002). https://datatracker.ietf.org/doc/html/rfc3393

  11. Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm. IEEE Trans. Signal Process. 53(8), 2961–2974 (2005)

    Article  MathSciNet  Google Scholar 

  12. Dhamdhere, A., et al.: Inferring persistent interdomain congestion. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, pp. 1–15 (2018)

    Google Scholar 

  13. Fontugne, R., Mazel, J., Fukuda, K.: An empirical mixture model for large-scale RTT measurements. In: Proceedings of IEEE INFOCOM (2015)

    Google Scholar 

  14. Fontugne, R., Pelsser, C., Aben, E., Bush, R.: Pinpointing delay and forwarding anomalies using large-scale traceroute measurements. In: Proceedings of ACM Internet Measurement Conference (2017). https://doi.org/10.1145/3131365.3131384

  15. Fontugne, R., Shah, A., Cho, K.: Persistent last-mile congestion: not so uncommon. In: Proceedings of the ACM Internet Measurement Conference, pp. 420–427 (2020)

    Google Scholar 

  16. Gettys, J.: Bufferbloat: dark buffers in the internet. IEEE Internet Comput. 15(3), 96–96 (2011)

    Article  Google Scholar 

  17. Iodice, M., Candela, M., Battista, G.D.: Periodic path changes in RIPE Atlas. IEEE Access 7, 65518–65526 (2019). https://doi.org/10.1109/access.2019.2917804

    Article  Google Scholar 

  18. Iyengar, J., Thomson, M. (eds.): QUIC: a UDP-based multiplexed and secure transport. RFC 9000 (Proposed Standard) (2021). https://doi.org/10.17487/RFC9000. https://www.rfc-editor.org/rfc/rfc9000.txt

  19. Jacobson, V.: Congestion avoidance and control. ACM SIGCOMM Comput. Commun. Rev. 18(4), 314–329 (1988)

    Article  Google Scholar 

  20. Jaroszewicz, S., Mariani, M.C., Ferraro, M.: Long correlations and truncated levy walks applied to the study Latin-American market indices. Physica A 355(2–4), 461–474 (2005)

    Article  Google Scholar 

  21. Laki, S., Mátray, P., Hága, P., Csabai, I., Vattay, G.: A detailed path-latency model for router geolocation. In: EAI Tridentcom. IEEE (2009). https://doi.org/10.1109/tridentcom.2009.4976258

  22. Langley, A., et al.: The QUIC transport protocol: design and internet-scale deployment. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, pp. 183–196 (2017)

    Google Scholar 

  23. Luckie, M., Dhamdhere, A., Clark, D., Huffaker, B., Claffy, K.: Challenges in inferring internet interdomain congestion. In: Proceedings of the 2014 Conference on Internet Measurement Conference, pp. 15–22 (2014)

    Google Scholar 

  24. Luckie, M., Dhamdhere, A., Huffaker, B., Clark, D., Claffy, K.: Bdrmap: inference of borders between IP networks. In: Proceedings of the 2016 Internet Measurement Conference, pp. 381–396 (2016)

    Google Scholar 

  25. Mantegna, R.N., Stanley, H.E.: Econophysics: scaling and its breakdown in finance. J. Stat. Phys. 89(1), 469–479 (1997)

    Article  Google Scholar 

  26. Marder, A., Claffy, K.C., Snoeren, A.C.: Inferring cloud interconnections: validation, geolocation, and routing behavior. In: Hohlfeld, O., Lutu, A., Levin, D. (eds.) PAM 2021. LNCS, vol. 12671, pp. 230–246. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72582-2_14

    Chapter  Google Scholar 

  27. Mouchet, M., Vaton, S., Chonavel, T., Aben, E., Den Hertog, J.: Large-scale characterization and segmentation of internet path delays with infinite HMMs. IEEE Access 8, 16771–16784 (2020)

    Article  Google Scholar 

  28. Mustafa, I.B., Nadeem, T.: Dynamic traffic shaping technique for http adaptive video streaming using software defined networks. In: 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 178–180. IEEE (2015)

    Google Scholar 

  29. Pu, W., Zou, Z., Chen, C.W.: Video adaptation proxy for wireless dynamic adaptive streaming over HTTP. In: 2012 19th International Packet Video Workshop (PV), pp. 65–70. IEEE (2012)

    Google Scholar 

  30. Pucha, H., Zhang, Y., Mao, Z.M., Hu, Y.C.: Understanding network delay changes caused by routing events. ACM SIGMETRICS Perform. Eval. Rev. 35(1), 73–84 (2007). https://doi.org/10.1145/1269899.1254891

    Article  Google Scholar 

  31. Punskaya, E., Andrieu, C., Doucet, A., Fitzgerald, W.J.: Bayesian curve fitting using MCMC with applications to signal segmentation. IEEE Trans. Signal Process. 50(3), 747–758 (2002)

    Article  Google Scholar 

  32. Ren, H., et al.: Time-series anomaly detection service at Microsoft. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3009–3017 (2019)

    Google Scholar 

  33. Rüth, J., Poese, I., Dietzel, C., Hohlfeld, O.: A first look at QUIC in the wild. In: Beverly, R., Smaragdakis, G., Feldmann, A. (eds.) PAM 2018. LNCS, vol. 10771, pp. 255–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76481-8_19

    Chapter  Google Scholar 

  34. Spang, B., Hannan, V., Kunamalla, S., Huang, T.Y., McKeown, N., Johari, R.: Unbiased experiments in congested networks. arXiv preprint arXiv:2110.00118 (2021)

  35. Turkovic, B., Kuipers, F.A., Uhlig, S.: Interactions between congestion control algorithms. In: 2019 Network Traffic Measurement and Analysis Conference (TMA), pp. 161–168. IEEE (2019)

    Google Scholar 

  36. Xuan, X., Murphy, K.: Modeling changing dependency structure in multivariate time series. In: Proceedings of the 24th International Conference on Machine Learning, pp. 1055–1062 (2007)

    Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their insightful comments, and Maxime Mouchet for providing an implementation of the HMM algorithm. We would like to thank Fabian Bustamante (Northwestern University) for coming up with the original term Jitterbug to name this paper. This work was partly funded by research grants DARPA HR00112020014, NSF OAC-1724853 and NSF CNS-1925729.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Carisimo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carisimo, E., Mok, R.K.P., Clark, D.D., Claffy, K.C. (2022). Jitterbug: A New Framework for Jitter-Based Congestion Inference. In: Hohlfeld, O., Moura, G., Pelsser, C. (eds) Passive and Active Measurement. PAM 2022. Lecture Notes in Computer Science, vol 13210. Springer, Cham. https://doi.org/10.1007/978-3-030-98785-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98785-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98784-8

  • Online ISBN: 978-3-030-98785-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics