Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Econophysics: Scaling and its breakdown in finance

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss recent empirical results obtained by analyzing high-frequency data of a stock market index, the Standard and Poor’s 500. We focus on the scaling properties and on its breakdown of the index dynamics. A simple stochastic model, the truncated Lévy flight, is illustrated. Successes and limitations of this model are presented. A discussion about similarities and differences between the scaling properties observed in financial markets and in fully developed turbulence is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Pareto,Cours d’Economie Politique (Lausanne and Paris, 1897).

  2. L. J. B. Bachelier,Théorie de la Speculation (Gauthier-Villars, Paris, 1900).

    Google Scholar 

  3. B. B. Mandelbrot,J. Business 36:394 (1963); 39–242 (1966); 40:393 (1967).

    Article  Google Scholar 

  4. E. F. Fama,J. Business 38:34 (1965).

    Article  Google Scholar 

  5. P. H. Cootner (ed.),The Random Character of Stock Market Prices (MIT Press, Cambridge, MA, 1964).

    Google Scholar 

  6. P. K. Clark,Econometrica 41:135 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  7. R. F. Engle,Econometrica 50:987 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Bollerslev, R. Y. Chou, and K. F. Kroner,J. Econometrics 52:5 (1992).

    Article  Google Scholar 

  9. P. Bak, K. Chen, J. A. Scheinkman, and M. Woodford,Ricerche Economiche 47:3 (1993).

    Article  MATH  Google Scholar 

  10. R. N. Mantegna,Physica A 179:232 (1991).

    Article  ADS  Google Scholar 

  11. W. Li,International Journal of Bifurcation and Chaos 1:583 (1991).

    Article  MATH  Google Scholar 

  12. H. Takayasu, H. Miura, T. Hirabayashi, and K. Hamada,Physica A 184:127 (1992).

    Article  ADS  Google Scholar 

  13. J.-P. Bouchaud and D. Sornette,J. Phys. I France 4:863 (1994).

    Article  Google Scholar 

  14. R. N. Mantegna and H. E. Stanley,Nature 376:46 (1995).

    Article  ADS  Google Scholar 

  15. P. W. Anderson, K. J. Arrow, and D. Pines,The Economy as an Evolving Complex System (Addison-Wesley, Redwood City, 1988).

    MATH  Google Scholar 

  16. J. A. Scheinkman and B. J. LeBaron,J. Business 62:327 (1989).

    Google Scholar 

  17. W. A. Brock, D. A. Hsieh, and B. J. LeBaron,Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Inference (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  18. W. Feller,An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971).

    MATH  Google Scholar 

  19. B. V. Gnedenko and A. Kolmogorov,Limit Distribution for Sums of Independent Random Variables (Addison-Wesley, Cambridge, MA, 1954).

    Google Scholar 

  20. B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1983).

    Google Scholar 

  21. M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter,Nature 363:31 (1993), and references therein.

    Article  ADS  Google Scholar 

  22. P. Lévy, Théorie de l’Addition des Variables Aléatoires (Gauthier-Villars, Paris, 1937).

    Google Scholar 

  23. W. W. Brock and A. W. Kleidon,Journal of Economic Dynamics and Control 16:451 (1990).

    Article  Google Scholar 

  24. R. N. Mantegna and H. E. Stanley, inProceedings of the International Summer School of Physics “E. Fermi,” The Physics of Complex Systems, edited by F. Mallamace and H. E. Stanley (IOS Press, Amsterdam, 1997).

    Google Scholar 

  25. A. L. Tucker,J. Bus. Econ. Stat. 10:73 (1992); and references therein.

    Article  Google Scholar 

  26. R. N. Mantegna and H. E. Stanley,Phys. Rev. Lett. 73:2946 (1994); R. N. Mantegna and H. E. Stanley, inLévy Flights and Related Topics in Physics, edited by M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch (Springer, Berlin, 1995), p. 300.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. M. F. Shlesinger,Phys. Rev. Lett. 74:4959 (1995).

    Article  ADS  Google Scholar 

  28. I. Koponen,Phys. Rev. E52:1197 (1995).

    ADS  Google Scholar 

  29. R. N. Mantegna,Phys. Rev. E49:4677 (1994).

    ADS  Google Scholar 

  30. G. Samorodnitsky and M. S. Taqqu,Stable Non-Gaussian Random Processes: Stochastic-Models with Infinite Variance (Chapman and Hall, NY, 1994).

    MATH  Google Scholar 

  31. R. N. Mantegna and H. E. Stanley,Nature 383:587 (1996);Physica 239:225 (1997).

    Article  ADS  Google Scholar 

  32. G. W. Schwert,The Journal of Finance XLIV:1115 (1989).

    Article  Google Scholar 

  33. U. Frisch,Turbulence (Cambridge Univ. Press, Cambridge, UK, 1995).

    MATH  Google Scholar 

  34. S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y. Dodge,Nature 381:767 (1996).

    Article  ADS  Google Scholar 

  35. A. Arneodoet al., COND-MAT 9607120.

  36. P. Kailasnath, K. R. Sreenivasan, and G. Stolovitzky,Phys. Rev. Lett. 68:2766 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantegna, R.N., Stanley, H.E. Econophysics: Scaling and its breakdown in finance. J Stat Phys 89, 469–479 (1997). https://doi.org/10.1007/BF02770777

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02770777

Key Words