Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Turbulence on Financial Markets and a Model of a Multiplicative Cascade of Volatility

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A volatility model is developed for several time horizons, taking into account the distribution of the frequency of price fluctuations. The core of the model is the ability to identify and use the “carrier frequencies” of market prices to obtain a more accurate estimate of the current volatility. Our attention is focused on determining the structure of the market, taking into account the price dynamics and reflecting the presence of market agents operating on different time horizons. To evaluate the proposed model, we decided to compare the volatility estimates calculated for the S&P 500 index with the VIX index, which was chosen as the main objective indicator of market volatility. A comparison of the historical volatility, the multiplicative cascade model, and the proposed model shows the advantage of the latter in terms of the average absolute percentage error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. B. Mandelbrot, “The variation of certain speculative prices,” J. Bus. 36 (4), 394–419 (1963).

    Article  Google Scholar 

  2. R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation,” Econometrica 50 (4), 987–1008 (1982).

    Article  MathSciNet  Google Scholar 

  3. T. Bollerslev, “Generalized autoregressive conditional heteroscedasticity,” J. Econometrics 31 (3), 307–327 (1986).

    Article  MathSciNet  Google Scholar 

  4. D. B. Nelson, “Conditional heteroskedasticity in asset returns: A new approach,” Econometrica 59 (2), 347–370 (1991).

    Article  MathSciNet  Google Scholar 

  5. R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of the stock volatility and the crash of ’87: Discussion,” Rev. Financ. Stud. 3 (1), 103–106 (1990).

    Article  Google Scholar 

  6. R. F. Engle and V. K. Ng, “Measuring and testing the impact of news on volatility,” J. Finance 48 (5), 1749–1778 (1993).

    Article  Google Scholar 

  7. P. R. Hansen and A. Lunde, “A forecast comparison of volatility models: Does anything beat a GARCH(1,1),” J. Appl. Econometrics 20 (7), 873–889 (2005).

    Article  MathSciNet  Google Scholar 

  8. F. Black and M. Scholes, “The pricing of options and corporate liabilities,” J. Polit. Econ. 81 (3), 637–654 (1973).

    Article  MathSciNet  Google Scholar 

  9. R. C. Merton, “Theory of rational option pricing,” Bell J. Econ. Manage. Sci. 4 (1), 141–183 (1973).

    Article  MathSciNet  Google Scholar 

  10. S. J. Taylor, “Financial returns modelled by the product of two stochastic processes: A study of the daily sugar prices, 1961-1979,” in Time Series Analysis: Theory and Practice 1, Ed. by O. D. Anderson , Vol. 1. (North-Holland, Amsterdam, 1982), pp. 203– 226.

    Google Scholar 

  11. S. L. Heston, “A closed-form solution for options with stochastic volatility with applications to bond and currency options,” Rev. Financ. Stud. 6 (2), 327–343 (1993).

    Article  MathSciNet  Google Scholar 

  12. J. Hull and A. White, “The pricing of options on assets with stochastic volatilities,” J. Finance 42 (2), 281–300 (1987).

    Article  Google Scholar 

  13. L. O. Scott, “Option pricing when the variance changes randomly: Theory, estimation, and an application,” J. Financ. Quant. Anal. 22 (4), 419–438 (1987).

    Article  Google Scholar 

  14. E. M. Stein and J. C. Stein, “Stock price distributions with stochastic volatility: An analytic approach,” Rev. Financ. Stud. 4 (4), 727–752 (1991).

    Article  Google Scholar 

  15. T. G. Andersen, T. Bollerslev, F. X. Diebold, and P. Labys, “The distribution of realized exchange rate volatility,” J. Am. Stat. Assoc. 96 (453), 42–55 (2001). https://doi.org/10.1198/016214501750332965

    Article  MathSciNet  MATH  Google Scholar 

  16. T. G. Andersen, T. Bollerslev, F. X. Diebold, and P. Labys, “Modeling and forecasting realized volatility,” Econometrica 71 (2), 579–625 (2003).

    Article  MathSciNet  Google Scholar 

  17. O. E. Barndorff-Nielsen and N. Shephard, “Econometric analysis of realized volatility and its use in estimating stochastic volatility models,” J. R. Stat. Soc. Ser. B 64 (2), 253–280 (2002).

    Article  MathSciNet  Google Scholar 

  18. M. M. Dacorogna, U. A. Müller, R. B. Olsen, and O. V. Pictet, “Modelling short-term volatility with GARCH and HARCH models,” in Nonlinear Modelling of High Frequency Financial Time Series, Ed. by C. Dunis and B. Zhou (Wiley, Chichester, 1998), pp. 161–176.

    Google Scholar 

  19. G. Zumbach, “Volatility processes and volatility forecast with long memory,” Quant. Finance 4 (1), 70–86 (2004).

    MATH  Google Scholar 

  20. V. M. Isakov, S. I. Kabanikhin, A. A. Shananin, M. A. Shishlenin, and S. Zhang, “Algorithm for determining the volatility function in the Black–Scholes model,” Comput. Math. Math. Phys. 59 (10), 1753–1758 (2019).

    Article  MathSciNet  Google Scholar 

  21. A. N. Shiryaev, Essentials of Stochastic Financial Mathematics (Fazis, Moscow, 2004) [in Russian].

    Google Scholar 

  22. L. Onsager, “Statistical hydrodynamics,” Nuovo Cim. 6 (Suppl. 2), 279–287 (1949).

    Article  MathSciNet  Google Scholar 

  23. G. Gauthier, M. T. Reeves, X. Yu, A. S. Bradley, M. A. Baker, T. A. Bell, H. Rubinsztein-Dunlop, M. J. Davis, and T. W. Neely, “Giant vortex clusters in a two-dimensional quantum fluid,” Science 364 (6447), 1264–1267 (2019).

    Article  MathSciNet  Google Scholar 

  24. S. P. Johnstone, A. J. Groszek, P. T. Starkey, C. J. Billington, T. P. Simula, and K. Helmerson, “Evolution of large-scale flow from turbulence in a two-dimensional superfluid,” Science 364 (6447), 1267–1271 (2019).

    Article  MathSciNet  Google Scholar 

  25. S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y. Dodge, “Turbulent cascades in foreign exchange markets,” Nature 381 (6585), 767–770 (1996).

    Article  Google Scholar 

  26. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).

    Book  Google Scholar 

  27. W. Breymann, S. Ghashghaie, and P. Talkner, “A stochastic cascade model for FX dynamics,” Int. J. Theor. Appl. Finance 03 (03), 357–360 (2000).

    Article  Google Scholar 

  28. A. Subbotin, “A multi-horizon scale for volatility,” CES Working Papers, Documents de Travail du Centre d’Economie de la Sorbonne 2008.20 (CES/CNRS, Université Paris 1 Panthéon-Sorbonne, 2008). https://halshs.archives-ouvertes.fr/halshs-00261514.

  29. A. V. Subbotin, “Volatility models: from conditional heteroscedasticity to cascades at multiple horizons,” Prikl. Ekonometrika (Appl. Econometrics), No. 3 (15), 94–138 (2009).

  30. J. F. Muzy, J. Delour, and E. Bacry, “Modelling fluctuations of financial time series: From cascade process to stochastic volatility model,” Eur. Phys. J. B 17 (3), 537–548 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. E. Nikulin or A. A. Pekhterev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikulin, E.E., Pekhterev, A.A. Turbulence on Financial Markets and a Model of a Multiplicative Cascade of Volatility. Math Models Comput Simul 13, 660–666 (2021). https://doi.org/10.1134/S2070048221040177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221040177

Keywords: