Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Integrating Machine Learning with Augmented Reality for Accessible Assistive Technologies

  • Conference paper
  • First Online:
Universal Access in Human-Computer Interaction. User and Context Diversity (HCII 2022)

Abstract

Augmented Reality (AR) is a technology which enhances physical environments by superimposing digital data on top of a real-world view. AR has multiple applications and use cases, bringing digital data into the physical world enabling experiences such as training staff on complicated machinery without the risks that come with such activities. Numerous other uses have been developed including for entertainment, with AR games and cultural experiences now emerging. Recently, AR has been used for developing assistive technologies, with applications across a range of disabilities. To achieve the high-quality interactions expected by users, there has been increasing integration of AR with Machine Learning (ML) algorithms. This integration offers additional functionality to increase the scope of AR applications. In this paper we present the potential of integrating AR with ML algorithms for developing assistive technologies, for the use case of locating objects in the home context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Report on Disability Summary. https://www.who.int/publications/i/item/WHO-NMH-VIP-11.01. Accessed 24 Feb 2022

  2. Hung, S.-W., Chang, C.-W., Ma, Y.-C.: A new reality: exploring continuance intention to use mobile augmented reality for entertainment purposes. Technol. Soc. 67, 101757 (2021). https://doi.org/10.1016/j.techsoc.2021.101757

    Article  Google Scholar 

  3. Li, X., Yi, W., Chi, H.-L., Wang, X., Chan, A.P.C.: A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 86, 150–162 (2018). https://doi.org/10.1016/j.autcon.2017.11.003

    Article  Google Scholar 

  4. “Assistive technology.” https://www.who.int/news-room/fact-sheets/detail/assistive-technology. Accessed 24 Feb 2022

  5. “Labour Force Survey - Office for National Statistics.” https://www.ons.gov.uk/surveys/informationforhouseholdsandindividuals/householdandindividualsurveys/labourforcesurvey. Accessed 22 Feb 2022

  6. “New Home gb - eSight.” https://esighteyewear.com/gb. Accessed 24 Feb 2022

  7. “Envision Glasses.” https://www.letsenvision.com/envision-glasses. Accessed 24 Feb 2022

  8. Laviole, J., Thevin, L., Albouys-Perrois, J., Brock, A.: Nectar. In: Proceedings of the Virtual Reality International Conference - Laval Virtual, April 2018, pp. 1–6 (2018). https://doi.org/10.1145/3234253.3234317

  9. Chuang, T.-K., et al.: Deep trail-following robotic guide dog in pedestrian environments for people who are blind and visually impaired - learning from virtual and real worlds. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), May 2018, pp. 5849–5855. https://doi.org/10.1109/ICRA.2018.8460994

  10. Albouys-Perrois, J., Laviole, J., Briant, C., Brock, A.M.: Towards a multisensory augmented reality map for blind and low vision people. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, April 2018, vol. 2018, pp. 1–14 (2018). https://doi.org/10.1145/3173574.3174203

  11. Assistive Devices for People with Hearing or Speech Disorders | NIDCD. https://www.nidcd.nih.gov/health/assistive-devices-people-hearing-voice-speech-or-language-disorders. Accessed 22 Feb 2022

  12. Tam, V., Gelsomini, M., Garzotto, F.: Polipo. In: Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, March 2017, pp. 11–20 (2017). https://doi.org/10.1145/3024969.3025006

  13. Stone, B.G., Mills, K.A., Saggers, B.: Online multiplayer games for the social interactions of children with autism spectrum disorder: a resource for inclusive education. Int. J. Incl. Educ. 23(2), 209–228 (2019). https://doi.org/10.1080/13603116.2018.1426051

    Article  Google Scholar 

  14. EASY READING – Keeping the user at the digital original. https://www.easyreading.eu/. Accessed 24 Feb 2022

  15. Pradhan, A., Mehta, K., Findlater, L.: Accessibility came by accident. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, April 2018, vol. 2018-April, pp. 1–13 (2018). https://doi.org/10.1145/3173574.3174033

  16. Oliveira, R., Arriaga, P., Santos, F.P., Mascarenhas, S., Paiva, A.: Towards pro-social design: a scoping review of the use of robots and virtual agents to trigger prosocial behaviour. Comput. Hum. Behav. 114, 106547 (2021). https://doi.org/10.1016/j.chb.2020.106547

    Article  Google Scholar 

  17. Coughlan, J.M., Miele, J.: AR4VI: AR as an accessibility tool for people with visual impairments. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), October 2017, pp. 288–292 (2017). https://doi.org/10.1109/ISMAR-Adjunct.2017.89

  18. Cavus, N., Al-Dosakee, K., Abdi, A., Sadiq, S.: The utilization of augmented reality technology for sustainable skill development for people with special needs: a systematic literature review. Sustainability 13(19), 10532 (2021). https://doi.org/10.3390/su131910532

    Article  Google Scholar 

  19. Quintero, J., Baldiris, S., Rubira, R., Cerón, J., Velez, G.: Augmented reality in educational inclusion. A systematic review on the last decade. Front. Psychol. 10, 1835 (2019). https://doi.org/10.3389/FPSYG.2019.01835/BIBTEX

  20. Yoon, C., et al.: Leveraging augmented reality to create apps for people with visual disabilities. In: The 21st International ACM SIGACCESS Conference on Computers and Accessibility, October 2019, pp. 210–221 (2019). https://doi.org/10.1145/3308561.3353788

  21. Tian, Y., Yang, X., Yi, C., Arditi, A.: Toward a computer vision-based wayfinding aid for blind persons to access unfamiliar indoor environments. Mach. Vis. Appl. 24(3), 521–535 (2013). https://doi.org/10.1007/s00138-012-0431-7

    Article  Google Scholar 

  22. Huang, J., Kinateder, M., Dunn, M.J., Jarosz, W., Yang, X.-D., Cooper, E.A.: An augmented reality sign-reading assistant for users with reduced vision. PLoS ONE 14(1), e0210630 (2019). https://doi.org/10.1371/journal.pone.0210630

    Article  Google Scholar 

  23. Bakshi, A.M., Simson, J., de Castro, C., Yu, C.C., Dias, A.: Bright: an augmented reality assistive platform for visual impairment. In: 2019 IEEE Games, Entertainment, Media Conference (GEM), June 2019, pp. 1–4 (2019). https://doi.org/10.1109/GEM.2019.8811556

  24. lo Bianco, M., Pedell, S., Renda, G.: Augmented reality and home modifications. In: Proceedings of the 28th Australian Conference on Computer-Human Interaction - OzCHI 2016, November 2016, pp. 499–507 (2016). https://doi.org/10.1145/3010915.3010929

  25. Géron, A.: Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems (2019). https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/. Accessed 22 Feb 2022

  26. Dabran, I., Avny, T., Singher, E., ben Danan, H.: Augmented reality speech recognition for the hearing impaired. In: 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), November 2017, vol. 2017-November, pp. 1–4 (2017). https://doi.org/10.1109/COMCAS.2017.8244731

  27. Zhang, Z., Geiger, J., Pohjalainen, J., Mousa, A.E.-D., Jin, W., Schuller, B.: Deep learning for environmentally robust speech recognition. ACM Trans. Intell. Syst. Technol. 9(5), 1–28 (2018). https://doi.org/10.1145/3178115

    Article  Google Scholar 

  28. Gales, M., Young, S.: The application of hidden markov models in speech recognition. Found. Trends® Sig. Process. 1(3), 195–304 (2007). https://doi.org/10.1561/2000000004

  29. Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4–16 (1986). https://doi.org/10.1109/MASSP.1986.1165342

    Article  Google Scholar 

  30. Abdel-Hamid, O., Mohamed, A.R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional neural networks for speech recognition. IEEE Trans. Audio Speech Lang. Process. 22(10), 1533–1545 (2014). https://doi.org/10.1109/TASLP.2014.2339736

    Article  Google Scholar 

  31. Nassif, A.B., Shahin, I., Attili, I., Azzeh, M., Shaalan, K.: Speech recognition using deep neural networks: a systematic review. IEEE Access 7, 19143–19165 (2019). https://doi.org/10.1109/ACCESS.2019.2896880

    Article  Google Scholar 

  32. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement, April 2018. http://arxiv.org/abs/1804.02767. Accessed 22 Feb 2022

  33. Barakat, B., Steponenaite, A., Lall, G.S., Arshad, K., Wassell, I.J., Keates, S.: Assistive technology for the visually impaired: optimizing frame rate (freshness) to improve the performance of real-time objects detection application. In: Antona, M., Stephanidis, C. (eds.) HCII 2020. LNCS, vol. 12189, pp. 479–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49108-6_34

    Chapter  Google Scholar 

  34. Barakat, B., et al.: 6G opportunities arising from internet of things use cases: a review paper. Future Internet 13(6), 159 (2021). https://doi.org/10.3390/fi13060159

    Article  Google Scholar 

  35. Get Microsoft HoloLens - Microsoft Store en-GB. https://www.microsoft.com/en-gb/p/microsoft-hololens/9nblggh4qwnx?activetab=pivot:overviewtab. Accessed 25 Feb 2022

  36. Microsoft. MixedReality-WebRTC Documentation. https://microsoft.github.io/MixedReality-WebRTC/. Accessed 25 Feb 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basel Barakat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barakat, B., Hall, L., Keates, S. (2022). Integrating Machine Learning with Augmented Reality for Accessible Assistive Technologies. In: Antona, M., Stephanidis, C. (eds) Universal Access in Human-Computer Interaction. User and Context Diversity. HCII 2022. Lecture Notes in Computer Science, vol 13309. Springer, Cham. https://doi.org/10.1007/978-3-031-05039-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05039-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05038-1

  • Online ISBN: 978-3-031-05039-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics