Abstract
Carbon accounting calls for innovative digital infrastructures. The Paris Agreement and the 26th UN Climate Change Conference provide the frame for designing information systems for carbon accounting. This paper explores blockchain as a technology for carbon accounting and, in particular, for the Product Carbon Footprint. This article analyses core architectural designs of carbon footprints, consortia, and smart contract infrastructure. Experiences from the implementation of a carbon footprint blockchain demonstrator are reported. A coffee supply chain exemplifies the approach. Hyperledger Fabric and Minifabric from Hyperledger Labs are the technical frameworks used.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
UNFCCC: paris agreement, united nations framework on climate change. https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf. Accessed 04 Oct 2021
Schneider, L., et al.: Robust accounting of international transfers under article 6 of the paris agreement discussion paper (2017). https://www.dehst.de/SharedDocs/downloads/EN/project-mechanisms/discussion-papers/Differences_and_commonalities_paris_agreement2.pdf?__blob=publicationFile&v=4
World bank group: summary report: simulation on connecting climate market systems (English). https://documents.worldbank.org/en/publication/documents-reports/documentdetail/128121575306092470/summary%e2%80%90report%e2%80%90simulation%e2%80%90on%e2%80%90connecting%e2%80%90climate%e2%80%90market%e2%80%90systems. Accessed 17 Nov 2021
NutriSafe: NutriSafe - Sicherheit in der Lebensmittelproduktion und -logistik durch die Distributed-Ledger-Technologie. https://nutrisafe.de. Accessed 27 July 2020
Lamken, D., et al.: Design patterns and framework for blockchain integration in supply chains. In: IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2021 (2021). https://doi.org/10.1109/ICBC51069.2021.9461062
Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview (2018). https://doi.org/10.6028/NIST.IR.8202
Bundesamt für Sicherheit in der Informationstechnik: Blockchain sicher gestalten. Bonn (2019)
Xu, X., et al.: A taxonomy of Blockchain-based systems for architecture design. In: 2017 IEEE International Conference on Software Architecture (ICSA), pp. 243–252 (2017). https://doi.org/10.1109/ICSA.2017.33
Marchesi, M., Marchesi, L., Tonelli, R.: An agile software engineering method to design blockchain applications. In: Proceedings of the 14th Central and Eastern European Software Engineering Conference Russia. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3290621.3290627
Hoiss, T., Seidenfad, K., Lechner, U.: Blockchain service operations - a structured approach to operate a blockchain solution. In: 2021 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), pp. 11–19. IEEE (2021). https://doi.org/10.1109/DAPPS52256.2021.00007
Weking, J., Mandalenakis, M., Hein, A., Hermes, S., Böhm, M., Krcmar, H.: The impact of blockchain technology on business models – a taxonomy and archetypal patterns. Electron. Mark. 30(2), 285–305 (2019). https://doi.org/10.1007/s12525-019-00386-3
Jensen, T., Hedman, J., Henningsson, S.: How tradelens delivers business value with blockchain technology. MIS Q. Exec. 18(4), 221–243 (2019). https://doi.org/10.17705/2msqe.00018
Miehle, D., Henze, D., Seitz, A., Luckow, A., Bruegge, B.: PartChain: a decentralized traceability application for multi-tier supply chain networks in the automotive industry. In: 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON), pp. 140–145. IEEE, Newark (2019). https://doi.org/10.1109/DAPPCON.2019.00027
Catena-X automotive network e.V.i.G.: Catena-X automotive network. https://catena-x.net/en/. Accessed 15 Nov 2021
Dietrich, F., Ge, Y., Turgut, A., Louw, L., Palm, D.: Review and analysis of blockchain projects in supply chain management. Procedia Comput. Sci. 180, 724–733 (2021). https://doi.org/10.1016/j.procs.2021.01.295
Schmiedel, C., Fraunhofer IPK: die hyperledger fabric-blockchain sorgt für datensicherheit in der additiven fertigung. https://doi.org/10.1007/978-3-030-75004-6_3. https://www.ipk.fraunhofer.de/de/publikationen/futur/futur-online-exklusiv/vertrauen40.html. Accessed 09 Jan 2021
Richardson, A., Xu, J.: Carbon trading with blockchain. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds.) Mathematical Research for Blockchain Economy. SPBE, pp. 105–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53356-4_7
Eckert, J., López, D., Azevedo, C.L., Farooq, B.: A blockchain-based user-centric emission monitoring and trading system for multi-modal mobility. CoRR. abs/1908.0. (2019)
Baumann, T.: Blockchain and Emerging Digital Technologies for Enhancing Post-2020 Climate Markets (2018). https://doi.org/10.13140/RG.2.2.12242.71368
Al Kawasmi, E., Arnautovic, E., Svetinovic, D.: Bitcoin-based decentralized carbon emissions trading infrastructure model. Syst. Eng. 18, 115–130 (2015). https://doi.org/10.1002/sys.21291
Braden, S.: Blockchain potentials and limitations for selected climate policy instruments (2019). https://www.giz.de/en/downloads/giz2019-en-blockchain-potentials-for-climate.pdf
Franke, L., Schletz, M., Salomo, S.: Designing a blockchain model for the paris agreement’s carbon market mechanism. Sustainability 12(3), 1068 (2020). https://doi.org/10.3390/su12031068
Schletz, M., Franke, L., Salomo, S.: Blockchain application for the paris agreement carbon market mechanism—a decision framework and architecture. Sustainability 12(12), 5069 (2020). https://doi.org/10.3390/su12125069
Linux foundation: hyperledger fabric. https://www.hyperledger.org/use/fabric. Accessed 28 Dec 2021
Linux foundation: climate action and accounting SIG home. https://wiki.hyperledger.org/display/CASIG/Climate+Action+and+Accounting+SIG+Home. Accessed 18 Sep 2021
Energywatch Inc.: carbon accounting – everything you need to know. https://energywatch-inc.com/carbon-accounting/. Accessed 10 Feb 2022
Noelle Eckley Selin: carbon footprint. https://www.britannica.com/science/carbon-footprint
German Emissions Trading Authority (DEHSt): how does emissions trading work? https://www.dehst.de/EN/european-emissions-trading/understanding-emissions-trading/fundamentals/fundamentals_node.html. Accessed 29 Dec 2021
UNFCCC: data exchange standards for registry systems under the kyoto protocol. https://unfccc.int/files/kyoto_protocol/registry_systems/application/pdf/des_full_v1.1.10.pdf. Accessed 30 Jan 2022
European commission: EU ETS handbook. https://ec.europa.eu/clima/system/files/2017-03/ets_handbook_en.pdf. Accessed 30 Dec 2021
Abrell, J.: Database for the European Union Transaction Log. https://euets.info/static/download/Description_EUTL_database.pdf. Accessed 09 Jan 2021
Hearnehough, H., Kachi, A., Mooldijk, S., Warnecke, C., Schneider, L.: Future role for voluntary carbon markets in the Paris era (2020). https://www.umweltbundesamt.de/publikationen/future-role-for-voluntary-carbon-markets-in-the
Zhao, F., Chan, W.K.V.: When is blockchain worth it? a case study of carbon trading. Energies, 13 (2020). https://doi.org/10.3390/en13081980
Isermeyer, F., Heidecke, C., Osterburg, B.: Einbeziehung des Agrarsektors in die CO2-Bepreisung (2019). https://www.thuenen.de/media/publikationen/thuenen-workingpaper/ThuenenWorkingPaper_136.pdf
Lünenburger, B.: Klimaschutz und Emissionshandel in der Landwirtschaft (2013). http://www.uba.de/uba-info-medien/4397.html
Aakre, S., Hovi, J.: Emission trading: participation enforcement determines the need for compliance enforcement. Eur. Union Polit. 11, 427–445 (2010). https://doi.org/10.1177/1465116510369265
Lohmann, L.: Regulation as corruption in the carbon offset markets. In: Upsetting the Offset: The Political Economy of Carbon Markets. pp. 175–191. Mayfly Books, London (2009)
Frunza, M.C.: Fraud and carbon markets: the carbon connection (2013).https://doi.org/10.4324/9780203077399
Hermwille, L., Kreibich, N.: Identity crisis? voluntary carbon crediting and the paris agreement (2016)
Kreibich, N., Hermwille, L.: Caught in between: credibility and feasibility of the voluntary carbon market post-2020. Clim. Policy. 21, 1–19 (2021). https://doi.org/10.1080/14693062.2021.1948384
Schneider, L., Broekhoff, D., Cames, M., Healy, S., Füssler, J., La Hoz Theuer, S.: Market mechanisms in the paris agreement - differences and commonalities with kyoto mechanisms (2016). https://www.dehst.de/SharedDocs/downloads/DE/projektmechanismen/Differences_and_commonalities_paris_agreement_discussion_paper.html?nn=8596366
Müller, B., Michaelowa, A.: How to operationalize accounting under article 6 market mechanisms of the Paris agreement. Clim. Policy. 19, 812–819 (2019). https://doi.org/10.1080/14693062.2019.1599803
Hoiß, T., et al.: Design of blockchain-based information systems – design principles from the nutrisafe project. In: Clohessy, T., Walsh, E., Treiblmaier, H., and Stratopoulos, T. (eds.) “Blockchain beyond the Horizon” - Workshop at the European Conference on Information Systems (ECIS 2020) (2020)
Reimers, T., Leber, F., Lechner, U.: Integration of blockchain and internet of things in a car supply chain. In: 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON), pp. 146–151 (2019). https://doi.org/10.1109/DAPPCON.2019.00028
Seidenfad, K., Hoiss, T., Lechner, U.: A blockchain to bridge business information systems and industrial automation environments in supply chains. In: Krieger, U.R., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2021. CCIS, vol. 1404, pp. 22–40. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75004-6_3
Füssler, J., Wunderlich, A., Kreibich, N., Obergassel, W.: Incentives for private sector participation in the article 6.4 mechanism. discussion paper (2019). https://www.dehst.de/SharedDocs/downloads/EN/project-mechanisms/discussion-papers/climate-conference-2019_1.pdf?__blob=publicationFile&v=4
Vogel, J., Hagen, S., Thomas, O.: Discovering Blockchain for Sustainable Product-Service Systems to enhance the Circular Economy (2019). https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1295&context=wi2019
Gaiardelli, P., et al.: Product-service systems evolution in the era of Industry 4.0. Serv. Bus. 15(1), 177–207 (2021). https://doi.org/10.1007/s11628-021-00438-9
Kim, S.-K., Huh, J.-H.: Blockchain of carbon trading for UN sustainable development goals. Sustainability 12, 4021 (2020). https://doi.org/10.3390/su12104021
Greiner, S., Chagas, T., Krämer, N., Michaelowa, A., Brescia, D., Hoch, S.: Moving towards next generation carbon markets: observations from article 6 pilots. Freiburg (2019). https://doi.org/10.5167/uzh-175360
European Energy Exchange AG: EU ETS Auctions. https://www.eex.com/en/markets/environmental-markets/eu-ets-auctions. Accessed 07 Jan 2022
LIONS research project: carbon accounting demonstrator. https://github.com/LIONS-DLT/lab-toolchain/tree/master/carbon-demonstrator. Accessed 07 Jan 2022
Li, T.: Minifabric: a hyperledger fabric quick start tool. https://www.hyperledger.org/blog/2020/04/29/minifabric-a-hyperledger-fabric-quick-start-tool-with-video-guides. Accessed 17 Nov 2021
Hyperledger Labs: Minifabric Repository. https://github.com/hyperledger-labs/minifabric. Accessed 17 Nov 2021
Li, T.: spec.yaml. https://github.com/hyperledger-labs/minifabric/blob/main/spec.yaml. Accessed 01 Jan 2021
Hyperledger Labs: create runningonarm.md #322. https://github.com/hyperledger-labs/minifabric/pull/322. Accessed 28 Jan 2022
OTARIS interactive services GmbH: MetaHL Fabric. https://github.com/OTARIS/MF-Chaincode. Accessed 07 Jan 2022
Web 3.0 technologies stiftung: Polkadot. https://polkadot.network. Accessed 03 Jan 2022
Nakamoto, S.: Bitcoin: a Peer-to-Peer electronic cash system, 9 (2008). https://doi.org/10.1007/s10838-008-9062-0
Acknowledgments
The Project LIONS is funded by dtec.bw–Digitalization and Technology Research Center of the Bundeswehr which we gratefully acknowledge. We want to thank our research partners from project LIONS for discussions, particularly Tim Hoiss, for his support with the NutriSafe code base, the coffee supply chain use case and his contributions to design and implementation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Seidenfad, K., Wagner, T., Hrestic, R., Lechner, U. (2022). Demonstrating Feasibility of Blockchain-Driven Carbon Accounting – A Design Study and Demonstrator. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2022. Communications in Computer and Information Science, vol 1585. Springer, Cham. https://doi.org/10.1007/978-3-031-06668-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-06668-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06667-2
Online ISBN: 978-3-031-06668-9
eBook Packages: Computer ScienceComputer Science (R0)