Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Investigating Style with Scale Embeddings

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13267))

Included in the following conference series:

  • 855 Accesses

Abstract

In this paper, we use pitch-class vector embeddings to study scale relationships between composers. Recent research in natural language processing (NLP) has used machine learning to derive vector representations-known as embeddings—for words based on their co-occurrence. Borrowing from NLP, we use the word2vec algorithm to encode windows of pitch-classes, or pitch-class vectors, of music. We show that these embeddings not only replicate the well-known theoretical circle of fifths, but can also capture stylistic nuances between composers’ use of scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez, A.A., Gómez-Martin, F.: Distributed vector representations of folksong motifs. In: Montiel, M., Gómez-Martin, F., Agustín-Aquino, O.A. (eds.) International Conference on Mathematics and Computation in Music, pp. 325–332. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-21392-3_26

    Chapter  Google Scholar 

  2. Brunner, G., Wang, Y., Wattenhofer, R., Wiesendanger, J.: JamBot: Music theory aware chord based generation of polyphonic music with LSTMs. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence, pp. 519–526. IEEE (2017)

    Google Scholar 

  3. Chiu, M.: Macroharmonic progressions through the discrete fourier transform: an analysis from Maurice Duruflé’s requiem. Music Theory Online 27(3) (2021)

    Google Scholar 

  4. Kopp, D.: Chromatic Transformations in Nineteenth-Century Music. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  5. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89(4), 334–368 (1982)

    Article  Google Scholar 

  6. Madjiheurem, S., Qu, L., Walder, C.: Chord2vec: learning musical chord embeddings. In: Proceedings of the Constructive Machine Learning Workshop at 30th Conference on Neural Information Processing Systems. Barcelona, Spain (2016)

    Google Scholar 

  7. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represetations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  8. Nikrang, A., Sears, D.R., Widmer, G.: Automatic estimation of harmonic tension by distributed representation of chords. In: Aramaki, M., Davies, M.E.P., Kronland-Martinet, R., Ystad, S. (eds.) International Symposium on Computer Music Multidisciplinary Research, pp. 23–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-030-01692-0_2

    Chapter  Google Scholar 

  9. Riemann, H.: GroĂźe Kompositionslehre, vol. I. W. Spemann, Berlin (1902)

    Google Scholar 

  10. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  11. White, C.W., Quinn, I.: The Yale-classical archives corpus. Empirical Musicology Rev. 11(1), 50–58 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Chiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiu, M. (2022). Investigating Style with Scale Embeddings. In: Montiel, M., AgustĂ­n-Aquino, O.A., GĂłmez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07015-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07014-3

  • Online ISBN: 978-3-031-07015-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics