Abstract
In this paper, we use pitch-class vector embeddings to study scale relationships between composers. Recent research in natural language processing (NLP) has used machine learning to derive vector representations-known as embeddings—for words based on their co-occurrence. Borrowing from NLP, we use the word2vec algorithm to encode windows of pitch-classes, or pitch-class vectors, of music. We show that these embeddings not only replicate the well-known theoretical circle of fifths, but can also capture stylistic nuances between composers’ use of scales.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alvarez, A.A., GĂłmez-Martin, F.: Distributed vector representations of folksong motifs. In: Montiel, M., GĂłmez-Martin, F., AgustĂn-Aquino, O.A. (eds.) International Conference on Mathematics and Computation in Music, pp. 325–332. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-21392-3_26
Brunner, G., Wang, Y., Wattenhofer, R., Wiesendanger, J.: JamBot: Music theory aware chord based generation of polyphonic music with LSTMs. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence, pp. 519–526. IEEE (2017)
Chiu, M.: Macroharmonic progressions through the discrete fourier transform: an analysis from Maurice Duruflé’s requiem. Music Theory Online 27(3) (2021)
Kopp, D.: Chromatic Transformations in Nineteenth-Century Music. Cambridge University Press, Cambridge (2002)
Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89(4), 334–368 (1982)
Madjiheurem, S., Qu, L., Walder, C.: Chord2vec: learning musical chord embeddings. In: Proceedings of the Constructive Machine Learning Workshop at 30th Conference on Neural Information Processing Systems. Barcelona, Spain (2016)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represetations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Nikrang, A., Sears, D.R., Widmer, G.: Automatic estimation of harmonic tension by distributed representation of chords. In: Aramaki, M., Davies, M.E.P., Kronland-Martinet, R., Ystad, S. (eds.) International Symposium on Computer Music Multidisciplinary Research, pp. 23–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-030-01692-0_2
Riemann, H.: GroĂźe Kompositionslehre, vol. I. W. Spemann, Berlin (1902)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)
White, C.W., Quinn, I.: The Yale-classical archives corpus. Empirical Musicology Rev. 11(1), 50–58 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chiu, M. (2022). Investigating Style with Scale Embeddings. In: Montiel, M., AgustĂn-Aquino, O.A., GĂłmez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-07015-0_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07014-3
Online ISBN: 978-3-031-07015-0
eBook Packages: Computer ScienceComputer Science (R0)