Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Kinematically Adapted Sampling-Based Motion Planning Algorithm for Robotic Manipulators

  • Conference paper
  • First Online:
Advances in Robot Kinematics 2022 (ARK 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 24))

Included in the following conference series:

  • 1196 Accesses

Abstract

We introduce modifications to the sampling-based motion planning approach in robotics to adapt the method to the positioning problem of robotic manipulators. The proposed method combines the information from configuration and task spaces of the mechanisms to cluster and subsequently reduce the number of the samples. The clustering process results in construction of a graph, dubbed kinematic graph \(\mathfrak {G}_k(\mathfrak {V}_k,\mathfrak {E}_k)\). We present a step by step instruction of the construction of the kinematic graph. The kinematic graph introduces interesting advantages to the planning algorithm. For instance, planning using the kinematic graph will sort the possibilities of sudden configuration changes, due to the surjection of forward kinematics function for robotic manipulators, in planning phase out. Moreover, combination of information from configuration and task spaces can be utilized to form the cost and heuristic functions for the heuristic search algorithms, like A\(^{\text {*}}\). Furthermore, the clustering and reduction of the number of the samples has direct effect on the solution depth, that is, the shortest path found by the search algorithm. This in turn reduces the expense of computation and worst-time complexity of the search algorithm. Finally, the information from the vertices of the kinematic graph can be used for a Boolean collision check of the sampled configuration, without the need of extra calls on the forward kinematics function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angeles, J.: Fundamentals of Robotic Mechanical Systems. MES, vol. 124. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01851-5

    Book  MATH  Google Scholar 

  2. Brooks, R.A., Lozano-Perez, T.: A subdivision algorithm in configuration space for find path with rotation. IEEE Trans. Syst. Man Cybern. SMC-15(2), 224–233 (1985)

    Google Scholar 

  3. Cohen, B., Chitta, S., Likhachev, M.: Single-and dual-arm motion planning with heuristic search. Int. J. Robot. Res. 33(2), 305–320 (2014)

    Article  Google Scholar 

  4. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  5. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  6. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  7. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles, pp. 396–404. Springer, New York (1986). https://doi.org/10.1007/978-1-4613-8997-2_29

  8. Koenig, S., Likhachev, M.: D* Lite. Aaai/iaai 15 (2002)

    Google Scholar 

  9. Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning A*. Artif. Intell. 155(1–2), 93–146 (2004)

    Article  MathSciNet  Google Scholar 

  10. Koren, Y., Borenstein, J., et al.: Potential field methods and their inherent limitations for mobile robot navigation. In: ICRA, vol. 2, pp. 1398–1404 (1991)

    Google Scholar 

  11. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

    Google Scholar 

  12. LaValle, S.M., et al.: Rapidly-exploring random trees: a new tool for path planning (1998)

    Google Scholar 

  13. Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: anytime A* with provable bounds on sub-optimality. In: Advances in Neural Information Processing Systems, pp. 767–774 (2004)

    Google Scholar 

  14. Lindemann, S.R., LaValle, S.M.: Current issues in sampling-based motion planning. In: Dario, P., Chatila, R. (eds.) Robotics Research. The Eleventh International Symposium. STAR, vol. 15, pp. 36–54. Springer, Heidelberg (2005). https://doi.org/10.1007/11008941_5

  15. Lozano-Perez, T.: A simple motion-planning algorithm for general robot manipulators. IEEE J. Robot. Autom. 3(3), 224–238 (1987)

    Article  Google Scholar 

  16. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  17. Mesesan, G., Roa, M.A., Icer, E., Althoff, M.: Hierarchical path planner using workspace decomposition and parallel task-space RRTs. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018)

    Google Scholar 

  18. Rickert, M., Sieverling, A., Brock, O.: Balancing exploration and exploitation in sampling-based motion planning. IEEE Trans. Robot. 30(6), 1305–1317 (2014)

    Article  Google Scholar 

  19. Shahidi, A., Hüsing, M., Corves, B.: Kinematic control of serial manipulators using Clifford algebra. IFAC-PapersOnLine 53(2), 9992–9999 (2020). https://doi.org/10.1016/j.ifacol.2020.12.2717. 21st IFAC World Congress

  20. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1

    Book  MATH  Google Scholar 

  21. Stentz, A., et al.: The focussed D* algorithm for real-time replanning. In: IJCAI, vol. 95, pp. 1652–1659 (1995)

    Google Scholar 

Download references

Acknowledgements

The Authors would like to thank for the kind support of German Research Foundation DFG (Deutsche Forschungsgemeinschaft) under Germany’s Excellence Strategy EXC-2023 Internet of Production 390621612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shahidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shahidi, A., Kinzig, T., Hüsing, M., Corves, B. (2022). Kinematically Adapted Sampling-Based Motion Planning Algorithm for Robotic Manipulators. In: Altuzarra, O., Kecskeméthy, A. (eds) Advances in Robot Kinematics 2022. ARK 2022. Springer Proceedings in Advanced Robotics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-08140-8_49

Download citation

Publish with us

Policies and ethics