Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Variational Autoencoders for Anomaly Detection in Respiratory Sounds

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

This paper proposes a weakly-supervised machine learning-based approach aiming at a tool to alert patients about possible respiratory diseases. Various types of pathologies may affect the respiratory system, potentially leading to severe diseases and, in certain cases, death. In general, effective prevention practices are considered as major actors towards the improvement of the patient’s health condition. The proposed method strives to realize an easily accessible tool for the automatic diagnosis of respiratory diseases. Specifically, the method leverages Variational Autoencoder architectures permitting the usage of training pipelines of limited complexity and relatively small-sized datasets. Importantly, it offers an accuracy of 57%, which is in line with the existing strongly-supervised approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beach, K.W., Dunmire, B.: Medical acoustics. In: Rossing, T.D. (ed.) Springer Handbook of Acoustics, pp. 877–937. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0755-7_21

    Chapter  Google Scholar 

  2. Bekkar, M., Djemaa, D.H.K.: Evaluation measures for models assessment over imbalanced data sets. J. Inf. Eng. Appl. 3(10), 13 (2013)

    Google Scholar 

  3. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bohadana, A., Izbicki, G., Kraman, S.S.: Fundamentals of lung auscultation. N. Engl. J. Med. 370(8), 744–751 (2014)

    Article  Google Scholar 

  5. Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical report (2010)

    Google Scholar 

  6. Chambres, G., Hanna, P., Desainte-Catherine, M.: Automatic detection of patient with respiratory diseases using lung sound analysis. In: CBMI Conference, pp. 1–6, September 2018

    Google Scholar 

  7. Chicco, D., Tötsch, N., Jurman, G.: The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Mining 14(1), 13 (2021)

    Article  Google Scholar 

  8. Demir, F., Sengur, A., Bajaj, V.: Convolutional neural networks based efficient approach for classification of lung diseases. Health Inf. Sci. Syst. 8(1), 1–8 (2019). https://doi.org/10.1007/s13755-019-0091-3

    Article  Google Scholar 

  9. Do, Q.T., Lipatov, K., Wang, H.Y., Pickering, B.W., Herasevich, V.: Classification of respiratory conditions using auscultation sound. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 1942–1945 (Nov 2021)

    Google Scholar 

  10. Simonetta, F., Ntalampiras, S., Avanzini, F.: Context-aware automatic music transcription (2022)

    Google Scholar 

  11. Hannan, A., Gruhl, C., Sick, B.: Anomaly based resilient network intrusion detection using inferential autoencoders. In: 2021 IEEE International Conference on Cyber Security and Resilience (CSR), pp. 1–7 (2021)

    Google Scholar 

  12. Jakovljević, N., Lončar-Turukalo, T.: Hidden Markov model based respiratory sound classification. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 39–43. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_7

    Chapter  Google Scholar 

  13. Li, C.: Robotic emotion recognition using two-level features fusion in audio signals of speech. IEEE Sens. J. 1 (2021)

    Google Scholar 

  14. Matias, P.A., Folgado, D., Gamboa, H., Carreiro, A.V.: Robust anomaly detection in time series through variational autoencoders and a local similarity score. In: BIOSIGNALS (2021)

    Google Scholar 

  15. Matthews, B.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Struct. 405(2), 442–451 (1975)

    Google Scholar 

  16. Milković, F., Filipović, B., Subašić, M., Petković, T., Lončarić, S., Budimir, M.: Ultrasound anomaly detection based on variational autoencoders. In: 2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 225–229 (2021)

    Google Scholar 

  17. Ntalampiras, S.: Collaborative framework for automatic classification of respiratory sounds. IET Signal Process. 14(4), 223–228 (2020)

    Article  Google Scholar 

  18. Ntalampiras, S., Potamitis, I.: Classification of sounds indicative of respiratory diseases. In: Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, C. (eds.) EANN 2019. CCIS, vol. 1000, pp. 93–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20257-6_8

    Chapter  Google Scholar 

  19. Ntalampiras, S., Potamitis, I.: Acoustic detection of unknown bird species and individuals. CAAI Trans. Intell. Technol. 6(3), 291–300 (2021)

    Article  Google Scholar 

  20. Paseddula, C., Gangashetty, S.V.: DNN based acoustic scene classification using score fusion of MFCC and inverse MFCC. In: 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), pp. 18–21 (2018)

    Google Scholar 

  21. Perna, D.: Convolutional neural networks learning from respiratory data. In: IEEE BIBM Conference, pp. 2109–2113, December 2018

    Google Scholar 

  22. Perna, D., Tagarelli, A.: Deep auscultation: Predicting respiratory anomalies and diseases via recurrent neural networks. In: IEEE CBMS Symposium, pp. 50–55, June 2019

    Google Scholar 

  23. Pham, L., McLoughlin, I., Phan, H., Tran, M., Nguyen, T., Palaniappan, R.: Robust deep learning framework for predicting respiratory anomalies and diseases. In: EMBC Conference, pp. 164–167, July 2020

    Google Scholar 

  24. Pham, L., Ngo, D., Hoang, T., Schindler, A., McLoughlin, I.: An ensemble of deep learning frameworks applied for predicting respiratory anomalies. arXiv:2201.03054 Cs Eess, January 2022

  25. Rao, S., Narayanaswamy, V., Esposito, M., Thiagarajan, J., Spanias, A.: Deep learning with hyper-parameter tuning for COVID-19 cough detection. In: 2021 12th International Conference on Information, Intelligence, Systems Applications (IISA), pp. 1–5 (2021)

    Google Scholar 

  26. Rocha, B.M., et al.: An open access database for the evaluation of respiratory sound classification algorithms. Physiol. Meas. 40(3), 035001 (2019)

    Article  Google Scholar 

  27. Rocha, B.M., Pessoa, D., Marques, A., Carvalho, P., Paiva, R.P.: Influence of event duration on automatic wheeze classification. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 7462–7469 (2021). https://doi.org/10.1109/ICPR48806.2021.9412226

  28. Serbes, G., Ulukaya, S., Kahya, Y.P.: An automated lung sound preprocessing and classification system based onspectral analysis methods. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 45–49. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_8

    Chapter  Google Scholar 

  29. Tariq, Z., Shah, S.K., Lee, Y.: Feature-based fusion using CNN for lung and heart sound classification. Sensors 22(4), 1521 (2022)

    Article  Google Scholar 

  30. Yamshchikov, I.P., Tikhonov, A.: Music generation with variational recurrent autoencoder supported by history. SN Appl. Sci. 2(12), 1–7 (2020). https://doi.org/10.1007/s42452-020-03715-w

    Article  Google Scholar 

  31. Zak, M., Krzyżak, A.: Classification of lung diseases using deep learning models. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12139, pp. 621–634. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50420-5_47

    Chapter  Google Scholar 

  32. Zheng, F., Zhang, G., Song, Z.: Comparison of different implementations of MFCC. J. Comput. Sci. Technol. 16(6), 582–589 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Ntalampiras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cozzatti, M., Simonetta, F., Ntalampiras, S. (2022). Variational Autoencoders for Anomaly Detection in Respiratory Sounds. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13532. Springer, Cham. https://doi.org/10.1007/978-3-031-15937-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15937-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15936-7

  • Online ISBN: 978-3-031-15937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics