Abstract
This paper proposes a weakly-supervised machine learning-based approach aiming at a tool to alert patients about possible respiratory diseases. Various types of pathologies may affect the respiratory system, potentially leading to severe diseases and, in certain cases, death. In general, effective prevention practices are considered as major actors towards the improvement of the patient’s health condition. The proposed method strives to realize an easily accessible tool for the automatic diagnosis of respiratory diseases. Specifically, the method leverages Variational Autoencoder architectures permitting the usage of training pipelines of limited complexity and relatively small-sized datasets. Importantly, it offers an accuracy of 57%, which is in line with the existing strongly-supervised approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beach, K.W., Dunmire, B.: Medical acoustics. In: Rossing, T.D. (ed.) Springer Handbook of Acoustics, pp. 877–937. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0755-7_21
Bekkar, M., Djemaa, D.H.K.: Evaluation measures for models assessment over imbalanced data sets. J. Inf. Eng. Appl. 3(10), 13 (2013)
Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)
Bohadana, A., Izbicki, G., Kraman, S.S.: Fundamentals of lung auscultation. N. Engl. J. Med. 370(8), 744–751 (2014)
Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical report (2010)
Chambres, G., Hanna, P., Desainte-Catherine, M.: Automatic detection of patient with respiratory diseases using lung sound analysis. In: CBMI Conference, pp. 1–6, September 2018
Chicco, D., Tötsch, N., Jurman, G.: The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Mining 14(1), 13 (2021)
Demir, F., Sengur, A., Bajaj, V.: Convolutional neural networks based efficient approach for classification of lung diseases. Health Inf. Sci. Syst. 8(1), 1–8 (2019). https://doi.org/10.1007/s13755-019-0091-3
Do, Q.T., Lipatov, K., Wang, H.Y., Pickering, B.W., Herasevich, V.: Classification of respiratory conditions using auscultation sound. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 1942–1945 (Nov 2021)
Simonetta, F., Ntalampiras, S., Avanzini, F.: Context-aware automatic music transcription (2022)
Hannan, A., Gruhl, C., Sick, B.: Anomaly based resilient network intrusion detection using inferential autoencoders. In: 2021 IEEE International Conference on Cyber Security and Resilience (CSR), pp. 1–7 (2021)
Jakovljević, N., Lončar-Turukalo, T.: Hidden Markov model based respiratory sound classification. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 39–43. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_7
Li, C.: Robotic emotion recognition using two-level features fusion in audio signals of speech. IEEE Sens. J. 1 (2021)
Matias, P.A., Folgado, D., Gamboa, H., Carreiro, A.V.: Robust anomaly detection in time series through variational autoencoders and a local similarity score. In: BIOSIGNALS (2021)
Matthews, B.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Struct. 405(2), 442–451 (1975)
Milković, F., Filipović, B., Subašić, M., Petković, T., Lončarić, S., Budimir, M.: Ultrasound anomaly detection based on variational autoencoders. In: 2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 225–229 (2021)
Ntalampiras, S.: Collaborative framework for automatic classification of respiratory sounds. IET Signal Process. 14(4), 223–228 (2020)
Ntalampiras, S., Potamitis, I.: Classification of sounds indicative of respiratory diseases. In: Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, C. (eds.) EANN 2019. CCIS, vol. 1000, pp. 93–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20257-6_8
Ntalampiras, S., Potamitis, I.: Acoustic detection of unknown bird species and individuals. CAAI Trans. Intell. Technol. 6(3), 291–300 (2021)
Paseddula, C., Gangashetty, S.V.: DNN based acoustic scene classification using score fusion of MFCC and inverse MFCC. In: 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), pp. 18–21 (2018)
Perna, D.: Convolutional neural networks learning from respiratory data. In: IEEE BIBM Conference, pp. 2109–2113, December 2018
Perna, D., Tagarelli, A.: Deep auscultation: Predicting respiratory anomalies and diseases via recurrent neural networks. In: IEEE CBMS Symposium, pp. 50–55, June 2019
Pham, L., McLoughlin, I., Phan, H., Tran, M., Nguyen, T., Palaniappan, R.: Robust deep learning framework for predicting respiratory anomalies and diseases. In: EMBC Conference, pp. 164–167, July 2020
Pham, L., Ngo, D., Hoang, T., Schindler, A., McLoughlin, I.: An ensemble of deep learning frameworks applied for predicting respiratory anomalies. arXiv:2201.03054 Cs Eess, January 2022
Rao, S., Narayanaswamy, V., Esposito, M., Thiagarajan, J., Spanias, A.: Deep learning with hyper-parameter tuning for COVID-19 cough detection. In: 2021 12th International Conference on Information, Intelligence, Systems Applications (IISA), pp. 1–5 (2021)
Rocha, B.M., et al.: An open access database for the evaluation of respiratory sound classification algorithms. Physiol. Meas. 40(3), 035001 (2019)
Rocha, B.M., Pessoa, D., Marques, A., Carvalho, P., Paiva, R.P.: Influence of event duration on automatic wheeze classification. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 7462–7469 (2021). https://doi.org/10.1109/ICPR48806.2021.9412226
Serbes, G., Ulukaya, S., Kahya, Y.P.: An automated lung sound preprocessing and classification system based onspectral analysis methods. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 45–49. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_8
Tariq, Z., Shah, S.K., Lee, Y.: Feature-based fusion using CNN for lung and heart sound classification. Sensors 22(4), 1521 (2022)
Yamshchikov, I.P., Tikhonov, A.: Music generation with variational recurrent autoencoder supported by history. SN Appl. Sci. 2(12), 1–7 (2020). https://doi.org/10.1007/s42452-020-03715-w
Zak, M., Krzyżak, A.: Classification of lung diseases using deep learning models. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12139, pp. 621–634. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50420-5_47
Zheng, F., Zhang, G., Song, Z.: Comparison of different implementations of MFCC. J. Comput. Sci. Technol. 16(6), 582–589 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cozzatti, M., Simonetta, F., Ntalampiras, S. (2022). Variational Autoencoders for Anomaly Detection in Respiratory Sounds. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13532. Springer, Cham. https://doi.org/10.1007/978-3-031-15937-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-15937-4_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15936-7
Online ISBN: 978-3-031-15937-4
eBook Packages: Computer ScienceComputer Science (R0)