Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MuSig-L: Lattice-Based Multi-signature with Single-Round Online Phase

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Abstract

Multi-signatures are protocols that allow a group of signers to jointly produce a single signature on the same message. In recent years, a number of practical multi-signature schemes have been proposed in the discrete-log setting, such as MuSig2 (CRYPTO’21) and DWMS (CRYPTO’21). The main technical challenge in constructing a multi-signature scheme is to achieve a set of several desirable properties, such as (1) security in the plain public-key (PPK) model, (2) concurrent security, (3) low online round complexity, and (4) key aggregation. However, previous lattice-based, post-quantum counterparts to Schnorr multi-signatures fail to satisfy these properties.

In this paper, we introduce MuSig-L, a lattice-based multi-signature scheme simultaneously achieving these design goals for the first time. Unlike the recent, round-efficient proposal of Damgård et al. (PKC’21), which had to rely on lattice-based trapdoor commitments, we do not require any additional primitive in the protocol, while being able to prove security from the standard module-SIS and LWE assumptions. The resulting output signature of our scheme therefore looks closer to the usual Fiat–Shamir-with-abort signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note in multi-signature every honest party behaves identically and thinks of themselves as “\(P_1\)” [7]. Other parties \(P_2, \ldots , P_n\) are called co-signers.

  2. 2.

    Observe that to avoid rejecting valid signatures due to arithmetic overflow q has to be larger than the size of the coefficients in the aggregated signature, i.e., the size of the ring has to grow linearly with \(\sqrt{n}\) too. This is inherent to additively aggregating signatures. As observed in [16], having a larger q makes \(\textsf{MSIS}_{}\) harder, but \(\textsf{MLWE}_{}\) easier. Compensating for it requires increasing N by a factor \(O\left( 1+\frac{\log n}{\log q_0}\right) \), where \(q_0\) is the modulus used in the single party case. However, one usually sets \(q>2^{20}\), which makes \(\frac{\log n}{\log q_0}\) less than 2 even for billions of users, and allows to neglect this factor in the signature size estimates.

  3. 3.

    This is not immediately evident from their analysis of the signature length. In fact, verifiability requires a signature to include the randomness used to generate the commitments. Such randomness is sampled from a discrete Gaussian of parameter s, which has to be large enough to be sampled using a trapdoor, i.e., linear in N (cf. [16, Theorem 2]) times square root of the number of parties (since the sum of n Gaussian randomness is output as a signature). This adds a factor \(O(\log (N\sqrt{n}))\) to their signature length, making it equivalent to ours.

  4. 4.

    Note that once \(b^{(j)}\)’s are simulated, finding corresponding uniform randomness \(r^{(j)}\)’s are easy assuming that the \(\textsf{Samp}\) algorithm is “sampleable” [14]. Such a property can be for example satisfied by simple CDT-based samplers.

References

  1. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete gaussian leftover hash lemma over infinite domains. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 97–116. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_6

    Chapter  Google Scholar 

  2. Agrawal, S., Kirshanova, E., Stehlé, D., Yadav, A.: Can round-optimal lattice-based blind signatures be practical? IACR Cryptology ePrint Archive, p. 1565 (2021)

    Google Scholar 

  3. Agrawal, S., Stehle, D., Yadav, A.: Round-optimal lattice-based threshold signatures, revisited. Cryptology ePrint Archive, Paper 2022/634 (2022)

    Google Scholar 

  4. Alper, H.K., Burdges, J.: Two-round trip schnorr multi-signatures via delinearized witnesses. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 157–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_7

    Chapter  Google Scholar 

  5. Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_20

    Chapter  Google Scholar 

  6. Bellare, M., Dai, W.: Chain reductions for multi-signatures and the HBMS scheme. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 650–678. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_22

    Chapter  Google Scholar 

  7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: ACM CCS 2006, pp. 390–399. ACM Press (2006)

    Google Scholar 

  8. Bendlin, R., Krehbiel, S., Peikert, C.: How to share a lattice trapdoor: threshold protocols for signatures and (H)IBE. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 218–236. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_14

    Chapter  MATH  Google Scholar 

  9. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_2

    Chapter  MATH  Google Scholar 

  10. Bert, P., Eberhart, G., Prabel, L., Roux-Langlois, A., Sabt, M.: Implementation of lattice trapdoors on modules and applications. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 195–214. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_11

    Chapter  Google Scholar 

  11. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_19

    Chapter  Google Scholar 

  12. Boneh, D., Kim, S.: One-time and interactive aggregate signatures from lattices. preprint (2020)

    Google Scholar 

  13. Boudgoust, K., Roux-Langlois, A.: Compressed linear aggregate signatures based on module lattices. IACR Cryptology ePrint Archive, p. 263 (2021)

    Google Scholar 

  14. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_13

    Chapter  Google Scholar 

  15. Crites, E.C., Komlo, C., Maller, M.: How to prove schnorr assuming schnorr: security of multi- and threshold signatures. IACR Cryptology ePrint Archive, p. 1375 (2021)

    Google Scholar 

  16. Damgård, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices. In: Garay, J.A. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 99–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_5

    Chapter  Google Scholar 

  17. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  18. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer Society Press (2019)

    Google Scholar 

  19. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - dilithium: digital signatures from module lattices. IACR Cryptology ePrint Archive, p. 633 (2018)

    Google Scholar 

  20. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_9

    Chapter  Google Scholar 

  21. Fukumitsu, M., Hasegawa, S.: A lattice-based provably secure multisignature scheme in quantum random oracle model. In: Nguyen, K., Wu, W., Lam, K.Y., Wang, H. (eds.) ProvSec 2020. LNCS, vol. 12505, pp. 45–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62576-4_3

    Chapter  Google Scholar 

  22. Garillot, F., Kondi, Y., Mohassel, P., Nikolaenko, V.: Threshold schnorr with stateless deterministic signing from standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 127–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_6

    Chapter  Google Scholar 

  23. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

    Article  MathSciNet  Google Scholar 

  24. Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous gaussian sampling: from inception to implementation. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 53–71. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_4

    Chapter  Google Scholar 

  25. Komlo, C., Goldberg, I.: FROST: flexible round-optimized schnorr threshold signatures. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 34–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_2

    Chapter  Google Scholar 

  26. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  27. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 293–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_11

    Chapter  Google Scholar 

  28. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3

    Chapter  Google Scholar 

  29. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_8

    Chapter  MATH  Google Scholar 

  30. Ma, C., Jiang, M.: Practical lattice-based multisignature schemes for blockchains. IEEE Access 7, 179765–179778 (2019)

    Article  Google Scholar 

  31. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures with applications to bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019)

    Article  MathSciNet  Google Scholar 

  32. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: ACM CCS 2001, pp. 245–254. ACM Press (2001)

    Google Scholar 

  33. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: 43rd FOCS, pp. 356–365. IEEE Computer Society Press (2002)

    Google Scholar 

  34. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  35. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2

    Chapter  Google Scholar 

  36. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round schnorr multi-signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_8

    Chapter  Google Scholar 

  37. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: schnorr multi-signatures with verifiably deterministic nonces. In: ACM CCS 2020, pp. 1717–1731. ACM Press (2020)

    Google Scholar 

  38. Nicolosi, A., Krohn, M.N., Dodis, Y., Mazières, D.: Proactive two-party signatures for user authentication. In: NDSS 2003. The Internet Society (2003)

    Google Scholar 

  39. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_13

    Chapter  Google Scholar 

  40. Stinson, D.R., Strobl, R.: Provably secure distributed schnorr signatures and a (t, n) threshold scheme for implicit certificates. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 417–434. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47719-5_33

    Chapter  MATH  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Claudio Orlandi for discussions in the earlier stages of this work. We thank Carsten Baum, Katharina Boudgoust, and Mark Simkin for helpful comments and discussions. Cecilia Boschini has been supported by the Università della Svizzera Italiana under the SNSF project number 182452, and by the Postdoc. Mobility grant No. P500PT_203075. Akira Takahashi has been supported by the Carlsberg Foundation under the Semper Ardens Research Project CF18-112 (BCM); the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No. 803096 (SPEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boschini, C., Takahashi, A., Tibouchi, M. (2022). MuSig-L: Lattice-Based Multi-signature with Single-Round Online Phase. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13508. Springer, Cham. https://doi.org/10.1007/978-3-031-15979-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15979-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15978-7

  • Online ISBN: 978-3-031-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics