Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predictive Maintenance of ATM Machines by Modelling Remaining Useful Life with Machine Learning Techniques

  • Conference paper
  • First Online:
17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022) (SOCO 2022)

Abstract

One of the main relevant topics of Industry 4.0 is related to the prediction of Remaining Useful Life (RUL) of machines. In this context, the “Smart Manufacturing Machine with Predictive Lifetime Electronic maintenance” (SIMPLE) project aims to promote collaborations among different companies in the scenario of predictive maintenance. One of the topics of the SIMPLE project is related to the prediction of RUL of automated teller machines (ATMs). This represents a key task as these machines are subject to different types of failure. However the main challenges in this field lie in: i) collecting a representative dataset, ii) correctly annotating the observations and iii) handling the imbalanced nature of the dataset. To overcome this problem, in this work we present a feature extraction strategy and a machine learning (ML) based solution for solving RUL estimation for ATM devices. We prove the effectiveness of our approach with respect to other state-of-the-art ML approaches widely employed for solving the RUL task. In addition, we propose the design of a predictive maintenance platform to integrate our ML model for the SIMPLE project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ayvaz, S., Alpay, K.: Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time. Expert Syst. Appl. 173, 114598 (2021). https://doi.org/10.1016/j.eswa.2021.114598

    Article  Google Scholar 

  2. Bilski, P.: Application of support vector machines to the induction motor parameters identification. Measurement 51, 377–386 (2014). https://doi.org/10.1016/j.measurement.2013.12.013

    Article  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  4. Calabrese, M., et al.: Sophia: an event-based IoT and machine learning architecture for predictive maintenance in industry 4.0. Information 11(4), 202 (2020). https://doi.org/10.3390/info11040202

  5. Carvalho, T.P., Soares, F.A., Vita, R., Francisco, R.d.P., Basto, J.P., Alcalá, S.G.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019). https://doi.org/10.1016/j.cie.2019.106024

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953

    Article  MATH  Google Scholar 

  7. Florian, E., Sgarbossa, F., Zennaro, I.: Machine learning-based predictive maintenance: a cost-oriented model for implementation. Int. J. Prod. Econ. 236, 108114 (2021). https://doi.org/10.1016/j.ijpe.2021.108114

    Article  Google Scholar 

  8. Hasanin, T., Khoshgoftaar, T.: The effects of random undersampling with simulated class imbalance for big data. In: 2018 IEEE International Conference on Information Reuse and Integration (IRI), pp. 70–79. IEEE (2018). https://doi.org/10.1109/IRI.2018.00018

  9. Kelleher, J.D., Mac Namee, B., D’arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press, Cambridge (2020)

    Google Scholar 

  10. Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)

    Google Scholar 

  11. Mishra, S.: Handling imbalanced data: smote vs. random undersampling. Int. Res. J. Eng. Technol 4(8), 317–320 (2017)

    Google Scholar 

  12. Nguyen, V., Seshadrinath, J., Wang, D., Nadarajan, S., Vaiyapuri, V.: Model-based diagnosis and RUL estimation of induction machines under interturn fault. IEEE Trans. Ind. Appl. 53(3), 2690–2701 (2017). https://doi.org/10.1109/TIA.2017.2669195

    Article  Google Scholar 

  13. Phillips, J., Cripps, E., Lau, J.W., Hodkiewicz, M.: Classifying machinery condition using oil samples and binary logistic regression. Mech. Syst. Sig. Process. 60, 316–325 (2015). https://doi.org/10.1016/j.ymssp.2014.12.020

    Article  Google Scholar 

  14. Schwendemann, S., Amjad, Z., Sikora, A.: A survey of machine-learning techniques for condition monitoring and predictive maintenance of bearings in grinding machines. Comput. Ind. 125, 103380 (2021). https://doi.org/10.1016/j.compind.2020.103380

    Article  Google Scholar 

  15. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inf. 11(3), 812–820 (2014). https://doi.org/10.1109/TII.2014.2349359

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported within the research agreement between Università Politecnica delle Marche and Sigma Spa for the project “Smart Manufacturing Machine with Predictive Lifetime Electronic maintenance (SIMPLE)” funded by Ministero dello Sviluppo Economico (Italia) - Fondo per la Crescita Sostenibile - Accordi per l’innovazione di cui al D.M. 24 maggio 2017. This work has been partially subsidised by “Agencia Española de Investigación (España)” (grant reference: PID2020-115454GB-C22/AEI/10.13039/501100011033), by “Consejería de Salud y Familia (Junta de Andalucía)” (grant reference: PS-2020-780) and by “Consejería de Transformación Económica, Industria, Conocimiento y Universidades (Junta de Andalucía) y Programa Operativo FEDER 2014-2020” (grant references: UCO-1261651 and PY20_00074). Víctor Manuel Vargas’s research has been subsidised by the FPU Predoctoral Program of the Spanish Ministry of Science, Innovation and Universities (MCIU), grant reference FPU18/00358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Rosati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosati, R. et al. (2023). Predictive Maintenance of ATM Machines by Modelling Remaining Useful Life with Machine Learning Techniques. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_23

Download citation

Publish with us

Policies and ethics