Abstract
The soft error assessment and mitigation literature are abundant, requiring a taxonomy to classify the different approaches. This book considers the definitions from Avižienis et al. [1] for fault, error, and failure. A fault is an event that may cause the internal state of the system to change, e.g., a radiation particle strike. When a fault affects the system’s internal state, it becomes an error. If the error causes a deviation of at least one of the system’s external states, then it is considered as a failure. To achieve compliance with safety and reliability standard requirements, it is of utmost importance to provide systems with appropriate mechanisms to tackle systematic, SEU, or SET faults, also known as soft errors. In this regard, this Chapter presents a literature review of the works related to this Book’s contributions to the soft error reliability assessment of ML models executing on resource-constrained IoT systems. First, Sect. 3.1 presents a review of fault injector frameworks implemented on the top of VPs. Next, Sect. 3.2 discusses some related works on soft error reliability assessment of ML models in different scopes. Finally, we distinguish this Book from the works found in the literature (Sects. 3.2.2 and 3.1.1).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The adopted RTL model must allow to access the register file and memory addressing.
References
Avižienis, A., Laprie, J.C., Randell, B.: Dependability and its threats: a taxonomy. In: Building the Information Society, pp. 91–120 (2004). https://doi.org/10.1007/978-1-4020-8157-6_13
Mansour, W., Velazco, R.: SEU fault-injection in VHDL-based processors: a case study. J. Electron. Test. 29(1), 87–94 (2013). https://doi.org/10.1007/s10836-013-5351-6
Abbasitabar, H., Zarandi, H.R., Salamat, R.: Susceptibility analysis of LEON3 embedded processor against multiple event transients and upsets. In: International Conference on Computational Science and Engineering (CSE), pp. 548–553 (2012). https://doi.org/10.1109/ICCSE.2012.81
Hari, S.K.S., Venkatagiri, R., Adve, S.V., Naeimi, H.: Ganges: gang error simulation for hardware resiliency evaluation. In: 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), pp. 61–72 (2014). https://doi.org/10.1145/2678373.2665685
de Aguiar Geissler, F., Kastensmidt, F.L., Souza, J.E.P.: Soft error injection methodology based on QEMU software platform. In: 2014 15th Latin American Test Workshop—LATW, pp. 1–5 (2014). https://doi.org/10.1109/LATW.2014.6841910
Parasyris, K., Tziantzoulis, G., Antonopoulos, C.D., Bellas, N.: GemFI: A fault injection tool for studying the behavior of applications on unreliable substrates. In: International Conference on Dependable Systems and Networks (DSN), pp. 622–629 (2014). https://doi.org/10.1109/DSN.2014.96
Kaliorakis, M., Tselonis, S., Chatzidimitriou, A., Foutris, N., Gizopoulos, D.: Differential fault injection on microarchitectural simulators. In: International Symposium on Workload Characterization (IISWC), pp. 172–182 (2015). https://doi.org/10.1109/IISWC.2015.28
Tanikella, K., Koy, Y., Jeyapaul, R., Lee, K., Shrivastava, A.: GemV: a validated toolset for the early exploration of system reliability. In: 2016 IEEE 27th International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 159–163 (2016). https://doi.org/10.1109/ASAP.2016.7760786
Didehban, M., Shrivastava, A.: nZDC: A compiler technique for near zero silent data corruption. In: Proceedings of the 53rd Annual Design Automation Conference (DAC), DAC ’16, pp. 48:1–48:6. ACM (2016). https://doi.org/10.1145/2897937.2898054
Guan, Q., BeBardeleben, N., Wu, P., Eidenbenz, S., Blanchard, S., Monroe, L., Baseman, E., Tan, L.: Design, use and evaluation of P-FSEFI: a parallel soft error fault injection framework for emulating soft errors in parallel applications. In: Proceedings of the 9th EAI International Conference on Simulation Tools and Techniques, SIMUTOOLS’16, pp. 9–17. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2016). https://doi.org/10.5555/3021426.3021429
Medeiros, G., Bortolon, F., Ost, L., Reis, R.: Evaluation of compiler optimization flags effects on soft error resiliency. In: Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 1–6 (2018). https://doi.org/10.1109/SBCCI.2018.8533246
Bandeira, V., Rosa, F., Reis, R., Ost, L.: Non-intrusive fault injection techniques for efficient soft error vulnerability analysis. In: 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC), pp. 123–128 (2019). https://doi.org/10.1109/VLSI-SoC.2019.892037
Hari, S.K.S., Adve, S.V., Naeimi, H., Ramachandran, P.: Relyzer: Exploiting application-level fault equivalence to analyze application resiliency to transient faults. In: Proceedings of the Seventeenth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 123–134. Association for Computing Machinery (2012). https://doi.org/10.1145/2150976.2150990
Rosa, F., Kastensmidt, F.L., Reis, R., Ost, L.: A fast and scalable fault injection framework to evaluate multi/many-core soft error reliability. In: International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), pp. 211–214 (2015). https://doi.org/10.1109/DFT.2015.7315164
Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Ha allberg, G., Hogberg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation platform. Computer 35(2), 50–58 (2002). https://doi.org/10.1109/2.982916
Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH Comput. Archit. News 33(4), 92–99 (2005). https://doi.org/10.1145/1105734.1105747
Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference, vol. 41, issue 46, pp. 10–5555 (2005). https://doi.org/10.5555/1247360.1247401
Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., Wood, D.A.: The gem5 simulator. SIGARCH Comput. Arch. News 39(2), 1–7 (2011). https://doi.org/10.1145/2024716.2024718
Patel, A., Afram, F., Chen, S., Ghose, K.: MARSS: A full system simulator for multicore x86 CPUs. In: Design Automation Conference (DAC), pp. 1050–1055 (2011). https://doi.org/10.1145/2024724.2024954
Imperas: Open Virtual Platforms (OVP) (2021). http://www.ovpworld.org/
Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi, R., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V., Weeratunga, S.: The NAS parallel benchmarks summary and preliminary results. In: Conference on Supercomputing (SC), pp. 158–165 (1991). https://doi.org/10.1145/125826.125925
Rosa, F., Ost, L., Reis, R., Davidmann, S., Lapides, L.: Evaluation of multicore systems soft error reliability using virtual platforms. In: International New Circuits and Systems Conference (NEWCAS), pp. 85–88 (2017). https://doi.org/10.1109/NEWCAS.2017.8010111
Imperas: DEV—Virtual Platform Development and Simulation (2021). https://www.imperas.com/dev-virtual-platform-development-and-simulation/
da Rosa, F., Bandeira, V., Reis, R., Ost, L.: Extensive evaluation of programming models and ISAs impact on multicore soft error reliability. In: Design Automation Conference (DAC), pp. 1–6 (2018). https://doi.org/10.1145/3195970.3196050
Lins, F.M., Tambara, L.A., Kastensmidt, F.L., Rech, P.: Register file criticality and compiler optimization effects on embedded microprocessor reliability. IEEE Trans. Nucl. Sci. 64(8), 2179–2187 (2017). https://doi.org/10.1109/TNS.2017.2705150
Sangchoolie, B., Ayatolahi, F., Johansson, R., Karlsson, J.: A study of the impact of bit-flip errors on programs compiled with different optimization levels. In: European Dependable Computing Conference (EDCC), pp. 146–157 (2014). https://doi.org/10.1109/EDCC.2014.30
Hoste, K., Eeckhout, L.: COLE: compiler optimization level exploration. In: International Symposium on Code Generation and Optimization (CGO), pp. 165–174 (2008). https://doi.org/10.1145/1356058.1356080
Serrano-Cases, A., Morilla, Y., Martín-Holgado, P., Cuenca-Asensi, S., Martínez-Álvarez, A.: Non-intrusive automatic compiler-guided reliability improvement of embedded applications under proton irradiation. IEEE Trans. Nucl. Sci. 66(7), 1500–1509 (2019). https://doi.org/10.1109/TNS.2019.2912323
Cho, H., Mirkhani, S., Cher, C.Y., Abraham, J.A., Mitra, S.: Quantitative evaluation of soft error injection techniques for robust system design. In: Design Automation Conference (DAC), pp. 1–10 (2013). https://doi.org/10.1145/2463209.2488859
Schirmeier, H., Breddemann, M.: Quantitative cross-layer evaluation of transient-fault injection techniques for algorithm comparison. In: European Dependable Computing Conference (EDCC), pp. 15–22. Naples, Italy (2019). https://doi.org/10.1109/EDCC.2019.00016
Schirmeier, H., Borchert, C., Spinczyk, O.: Avoiding pitfalls in fault-injection based comparison of program susceptibility to soft errors. In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 319–330. Rio de Janeiro, RJ, Brazil (2015). https://doi.org/10.1109/DSN.2015.44
Chatzidimitriou, A., Bodmann, P., Papadimitriou, G., Gizopoulos, D., Rech, P.: Demystifying soft error assessment strategies on ARM CPUs: microarchitectural fault injection versus neutron beam experiments. In: International Conference on Dependable Systems and Networks (DSN), pp. 26–38 (2019). https://doi.org/10.1109/DSN.2019.00018
Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.: Rodinia: A benchmark suite for heterogeneous computing. In: International Symposium on Workload Characterization (IISWC), pp. 44–54 (2009). https://doi.org/10.1109/IISWC.2009.5306797
Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The mälardalen WCET benchmarks: past, present and future. In: International Workshop on Worst-Case Execution Time Analysis (WCET), pp. 136–146 (2010). https://doi.org/10.4230/OASIcs.WCET.2010.136
Abich, G., Garibotti, R., Bandeira, V., da Rosa, F., Gava, J., Bortolon, F., Medeiros, G., Moraes, F.G., Reis, R., Ost, L.: Evaluation of the soft error assessment consistency of a JIT-based virtual platform simulator. IET Comput. Digit. Tech. 15(2), 125–142 (2021). https://doi.org/10.1049/cdt2.12017
da Rosa, F.R.: Early evaluation of multicore systems soft error reliability using virtual platforms. Ph.D. thesis, PGMICRO—UFRGS (2018). https://lume.ufrgs.br/handle/10183/181996
Hao, C., Dotzel, J., Xiong, J., Benini, L., Zhang, Z., Chen, D.: Enabling design methodologies and future trends for edge AI: specialization and codesign. IEEE Des. Test 38(4), 7–26 (2021). https://doi.org/10.1109/MDAT.2021.3069952
Lai, L., Suda, N., Chandra, V.: CMSIS-NN: Efficient neural network kernels for arm Cortex-M CPUs (2018). arXiv:1801.06601. https://doi.org/10.48550/arXiv.1801.06601
Capotondi, A., Rusci, M., Fariselli, M., Benini, L.: CMix-NN: mixed low-precision CNN library for memory-constrained edge devices. IEEE Trans. Circuits Syst. II: Express Briefs 67(5), 871–875 (2020). https://doi.org/10.1109/TCSII.2020.2983648
Brewer, R.M., Moran, S.L., Cox, J., Sierawski, B.D., McCurdy, M.W., Zhang, E.X., Iyer, S.S., Schrimpf, R.D., Alles, M.L., Reed, R.A.: The impact of proton-induced single events on image classification in a neuromorphic computing architecture. IEEE Trans. Nucl. Sci. 67(1), 108–115 (2019). https://doi.org/10.1109/TNS.2019.2957477
Granat, R., Wagstaff, K.L., Bornstein, B., Tang, B., Turmon, M.: Simulating and detecting radiation-induced errors for onboard machine learning. In: 2009 Third IEEE International Conference on Space Mission Challenges for Information Technology, pp. 125–131 (2009). https://doi.org/10.1109/SMC-IT.2009.22
Li, G., Pattabiraman, K., DeBardeleben, N.: Tensorfi: A configurable fault injector for tensorflow applications. In: 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 313–320 (2018). https://doi.org/10.1109/ISSREW.2018.00024
Chen, Z., Li, G., Pattabiraman, K., DeBardeleben, N.: Binfi: An efficient fault injector for safety-critical machine learning systems. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC), SC ’19, pp. 1–23. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3295500.3356177
Libano, F., Rech, P., Tambara, L., Tonfat, J., Kastensmidt, F.: On the reliability of linear regression and pattern recognition feedforward artificial neural networks in FPGAs. IEEE Trans. Nucl. Sci. 65(1), 288–295 (2017). https://doi.org/10.1109/TNS.2017.2784367
Salami, B., Unsal, O.S., Kestelman, A.C.: On the resilience of RTL NN accelerators: fault characterization and mitigation. In: 2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pp. 322–329 (2018). https://doi.org/10.1109/CAHPC.2018.8645906
Trindade, M.G., Coelho, A., Valadares, C., Viera, R.A., Rey, S., Cheymol, B., Baylac, M., Velazco, R., Bastos, R.P.: Assessment of a hardware-implemented machine learning technique under neutron irradiation. IEEE Trans. Nucl. Sci. 66(7), 1441–1448 (2019). https://doi.org/10.1109/TNS.2019.2920747
Khoshavi, N., Broyles, C., Bi, Y.: A survey on impact of transient faults on BNN inference accelerators (2020). arXiv:2004.05915. https://doi.org/10.48550/arXiv.2004.05915
Reagen, B., Gupta, U., Pentecost, L., Whatmough, P., Lee, S.K., Mulholland, N., Brooks, D., Wei, G.Y.: Ares: a framework for quantifying the resilience of deep neural networks. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6 (2018). https://doi.org/10.1109/DAC.2018.8465834
dos Santos, F.F., Pimenta, P.F., Lunardi, C., Draghetti, L., Carro, L., Kaeli, D., Rech, P.: Analyzing and increasing the reliability of convolutional neural networks on GPUs. IEEE Trans. Reliab. 68(2), 663–677 (2018). https://doi.org/10.1109/TR.2018.2878387
Ibrahim, Y., Wang, H., Bai, M., Liu, Z., Wang, J., Yang, Z., Chen, Z.: Soft error resilience of deep residual networks for object recognition. IEEE Access 8, 19490–19503 (2020). https://doi.org/10.1109/ACCESS.2020.2968129
Li, G., Hari, S.K.S., Sullivan, M., Tsai, T., Pattabiraman, K., Emer, J., Keckler, S.W.: Understanding error propagation in deep learning neural network (DNN) accelerators and applications. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–12 (2017). https://doi.org/10.1145/3126908.3126964
Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation. ACM Sigplan Not. 42(6), 89–100 (2007). https://doi.org/10.1145/1273442.1250746
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, pp. 265–283. USENIX Association, USA (2016). https://doi.org/10.48550/arXiv.1605.08695
Deng, L.: The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012). https://doi.org/10.1109/MSP.2012.2211477
Krizhevsky, A., Hinton, G., et al.: CIFAR-10/100—learning multiple layers of features from tiny images. Technical report, University of Toronto (2009). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P., Jahre, M., Vissers, K.: Finn: A framework for fast, scalable binarized neural network inference. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ’17, pp. 65–74. Association for Computing Machinery (2017). https://doi.org/10.1145/3020078.3021744
Chollet, F., et al.: Keras: The python deep learning library. Astrophysics source code library pp. ascl–1806 (2018). URL https://github.com/fchollet/keras
Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., et al.: Theano: a Python framework for fast computation of mathematical expressions (2016). arXiv:abs/1605.02688. https://doi.org/10.48550/arXiv.1605.02688
Hari, S.K.S., Tsai, T., Stephenson, M., Keckler, S.W., Emer, J.: Sassifi: an architecture-level fault injection tool for GPU application resilience evaluation. In: 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 249–258 (2017). https://doi.org/10.1109/ISPASS.2017.7975296
Tiny-DNN: Tiny-DNN framework (2017). https://github.com/tiny-dnn/tiny-dnn
Chen, Y.H., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH Comput. Arch. News 44(3), 367–379 (2016). https://doi.org/10.1145/3007787.3001177
Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., Imam, N., Nakamura, Y., Datta, P., Nam, G., Taba, B., Beakes, M., Brezzo, B., Kuang, J.B., Manohar, R., Risk, W.P., Jackson, B., Modha, D.S.: Truenorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015). https://doi.org/10.1109/TCAD.2015.2474396
dos Santos, F.F., Navaux, P., Carro, L., Rech, P.: Impact of reduced precision in the reliability of deep neural networks for object detection. In: 2019 IEEE European Test Symposium (ETS), pp. 1–6 (2019). https://doi.org/10.1109/ETS.2019.8791554
Trindade, M.G., Bastos, R.P., Garibotti, R., Ost, L., Letiche, M., Beaucour, J.: Assessment of machine learning algorithms for near-sensor computing under radiation soft errors. In: IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 1–4 (2020). https://doi.org/10.1109/ICECS49266.2020.9294938
Azizimazreah, A., Gu, Y., Gu, X., Chen, L.: Tolerating soft errors in deep learning accelerators with reliable on-chip memory designs. In: 2018 IEEE International Conference on Networking, Architecture and Storage (NAS), pp. 1–10 (2018). https://doi.org/10.1109/NAS.2018.8515692
Guan, H., Ning, L., Lin, Z., Shen, X., Zhou, H., Lim, S.H.: In-place zero-space memory protection for cnn. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2019). https://doi.org/10.48550/arXiv.1910.14479
Jasemi, M., Hessabi, S., Bagherzadeh, N.: Enhancing reliability of emerging memory technology for machine learning accelerators. IEEE Trans. Emerg. Top. Comput. pp. 1–7 (2020). https://doi.org/10.1109/TETC.2020.2984992
Bosio, A., Bernardi, P., Ruospo, A., Sanchez, E.: A reliability analysis of a deep neural network. In: 2019 IEEE Latin American Test Symposium (LATS), pp. 1–6 (2019). https://doi.org/10.1109/LATW.2019.8704548
Ping, L., Tan, J., Yan, K.: SERN: modeling and analyzing the soft error reliability of convolutional neural networks. In: Proceedings of the 2020 on Great Lakes Symposium on VLSI, pp. 445–450. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3386263.3406938
Luza, L.M., Söderström, D., Tsiligiannis, G., Puchner, H., Cazzaniga, C., Sanchez, E., Bosio, A., Dilillo, L.: Investigating the impact of radiation-induced soft errors on the reliability of approximate computing systems. In: 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6 (2020). https://doi.org/10.1109/DFT50435.2020.9250865
Corneliou, P., Nikolaou, P., Michael, M.K., Theocharides, T.: Fine-grained vulnerability analysis of resource constrained neural inference accelerators. In: 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6. IEEE (2021). https://doi.org/10.1109/DFT52944.2021.9568281
Tabanelli, E., Tagliavini, G., Benini, L.: DNN is not all you need: parallelizing non-neural ML algorithms on ultra-low-power IoT processors (2021). https://doi.org/10.48550/arXiv.2107.09448
Qi, X., Liu, C.: Enabling deep learning on IoT edge: approaches and evaluation. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 367–372 (2018). https://doi.org/10.1109/SEC.2018.00047
Zhang, Y., Du, B., Zhang, L., Wu, J.: Parallel DNN inference framework leveraging a compact RISC-V ISA-based multi-core system. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 627–635 (2020). https://doi.org/10.1145/3394486.3403105
Garofalo, A., Rusci, M., Conti, F., Rossi, D., Benini, L.: PULP-NN: accelerating quantized neural networks on parallel ultra-low-power RISC-V processors. Philos. Trans. R. Soc. A 378(2164), 1–21 (2020). https://doi.org/10.1098/rsta.2019.0155
da Rosa, F.R., Garibotti, R., Ost, L., Reis, R.: Using machine learning techniques to evaluate multicore soft error reliability. IEEE Trans. Circuits Syst.-I: Regul. Pap. 66(6), 2151–2164 (2019). https://doi.org/10.1109/TCSI.2019.2906155
Kastensmidt, F.L., Carro, L., da Luz Reis, R.A.: Fault-tolerance techniques for SRAM-based FPGAs, vol. 1. Springer, Berlin (2006). https://doi.org/10.1007/978-0-387-31069-5
Avirneni, N.D.P., Somani, A.: Low overhead soft error mitigation techniques for high-performance and aggressive designs. IEEE Trans. Comput. 61(4), 488–501 (2011). https://doi.org/10.1109/TC.2011.31
Mavis, D.G., Eaton, P.H.: Soft error rate mitigation techniques for modern microcircuits. In: 2002 IEEE International Reliability Physics Symposium, Proceedings, 40th Annual (Cat. No. 02CH37320), pp. 216–225. IEEE (2002). https://doi.org/10.1109/RELPHY.2002.996639
Nicolescu, B., Velazco, R.: Detecting soft errors by a purely software approach: method, tools and experimental results. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 57–62 (2003). https://doi.org/10.1007/0-306-48709-8_4
Benso, A., Chiusano, S., Prinetto, P., Tagliaferri, L.: A c/c++ source-to-source compiler for dependable applications. In: IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 71–78 (2000). https://doi.org/10.1109/ICDSN.2000.857517
Rodrigues, G.S., Kastensmidt, F.L., Reis, R., Rosa, F., Ost, L.: Analyzing the impact of using pthreads versus OpenMP under fault injection in ARM Cortex-A9 dual-core. In: European Conference on Radiation and Its Effects on Components and Systems (RADECS), pp. 1–6 (2016). https://doi.org/10.1109/RADECS.2016.8093180
Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: SWIFT: software implemented fault tolerance. In: International Symposium on Code Generation and Optimization (CGO), pp. 243–254 (2005). https://doi.org/10.1109/CGO.2005.34
Oh, N., Shirvani, P.P., McCluskey, E.J.: Error detection by duplicated instructions in super-scalar processors. IEEE Trans. Reliab. 51(1), 63–75 (2002). https://doi.org/10.1109/24.994913
Reis, G.A., Chang, J., August, D.I.: Automatic instruction-level software-only recovery. IEEE Micro 27(1), 36–47 (2007). https://doi.org/10.1109/DAC.2018.8465834
Feng, S., Gupta, S., Ansari, A., Mahlke, S.: Shoestring: probabilistic soft error reliability on the cheap. ACM SIGARCH Comput. Arch. News 38(1), 385–396 (2010). https://doi.org/10.1145/1735970.1736063
Feng, S., Gupta, S., Ansari, A., Mahlke, S.A., August, D.I.: Encore: low-cost, fine-grained transient fault recovery. In: IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 398–409 (2011). https://doi.org/10.1145/2155620.2155667
Kuvaiskii, D., Oleksenko, O., Bhatotia, P., Felber, P., Fetzer, C.: Elzar: triple modular redundancy using intel AVX (practical experience report). In: IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 646–653 (2016). https://doi.org/10.1109/DSN.2016.65
Didehban, M., Shrivastava, A., Lokam, S.R.D.: NEMESIS: a software approach for computing in presence of soft errors. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 297–304 (2017). https://doi.org/10.1109/ICCAD.2017.8203792
Didehban, M., Lokam, S.R.D., Shrivastava, A.: InCheck: an in-application recovery scheme for soft errors. In: ACM/IEEE Design Automation Conference (DAC), pp. 1–6 (2017). https://doi.org/10.1145/3061639.3062265
Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.P.: Machine learning for internet of things data analysis: a survey. Digit. Commun. Netw. 4(3), 161–175 (2018). https://doi.org/10.1016/j.dcan.2017.10.002
Amoh, J., Odame, K.M.: An optimized recurrent unit for ultra-low-power keyword spotting. ACM Interact., Mob., Wearable Ubiquitous Technol. 3(2) (2019). https://doi.org/10.1145/3328907
Libano, F., Wilson, B., Anderson, J., Wirthlin, M.J., Cazzaniga, C., Frost, C., Rech, P.: Selective hardening for neural networks in FPGAs. IEEE Trans. Nucl. Sci. 66(1), 216–222 (2019). https://doi.org/10.1109/TNS.2018.2884460
Kundu, S., Basu, K., Sadi, M., Titirsha, T., Song, S., Das, A., Guin, U.: Special session: reliability analysis for ML/AI hardware (2021). arXiv:2103.12166. https://doi.org/10.48550/arXiv.2103.12166
Chen, Z., Li, G., Pattabiraman, K.: A low-cost fault corrector for deep neural networks through range restriction. In: 2021 51th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (2021). https://doi.org/10.1109/DSN48987.2021.00018
Adam, K., Mohd, I.I., Younis, Y.M.: The impact of the soft errors in convolutional neural network on GPUs: Alexnet as case study. Procedia Comput. Sci. 182, 89–94 (2021). https://doi.org/10.1016/j.procs.2021.02.012
Deng, J., Dong, W., Socher, R., Li, L., Kai, L., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009). https://doi.org/10.1109/CVPR.2009.5206848
Leveugle, R., Calvez, A., Maistri, P., Vanhauwaert, P.: Statistical fault injection: quantified error and confidence. In: Design, Automation and Test in Europe Conference (DATE), pp. 502–506 (2009). https://doi.org/10.1109/DATE.2009.5090716
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Abich, G., Ost, L., Reis, R. (2023). Related Works. In: Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Constrained IoT Edge Devices. Synthesis Lectures on Engineering, Science, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-18599-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-18599-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18598-4
Online ISBN: 978-3-031-18599-1
eBook Packages: Synthesis Collection of Technology (R0)eBColl Synthesis Collection 12