Abstract
Many real world networks are multi-relational exhibiting multiple types of relations between nodes. In such complex systems, some of the interaction layers can be dependent on other layers. Unveiling this kind of relational implications among the different layers of a multilayer network is crucial to understand its dynamic properties, and to reveal new non-trivial structural properties. We propose a method, based on Formal Concept Analysis, to discover the implication rules between the different layers in a multilayer network. We demonstrate the usefulness of this method using two large real-world multilayer networks. We also explore how such discovered implications can be exploited in a link prediction task, and the results show that this approach can achieve a good accuracy of 77% for one of the networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Notice that even if we conduct the implication discovery using this pruned set of edges, we still obtain the same set of implications.
References
Alam, M., Buzmakov, A., Codocedo, V., Napoli, A.: Mining definitions from RDF annotations using formal concept analysis. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI (2015)
Aufaure, M.-A., Le Grand, B.: Advances in FCA-based applications for social networks analysis. Int. J. Concept. Struct. Smart Appl. 1(1), 73–89 (2013)
Bazhanov, K., Obiedkov, S.A.: Comparing performance of algorithms for generating the duquenne-guigues basis. In: International Conference on Concept Lattices and Their Applications, Nancy, France, pp. 43–57 (2011)
Bianconi, G.: Multilayer Networks: Structure and Function. Oxford University Press, Oxford (2018)
Cardillo, A., et al.: Emergence of Network Features from Multiplexity. Sci. Rep. 3(1), 1–6 (2013)
Cuvelier, E., Aufaure, M.-A.: A buzz and e-reputation monitoring tool for twitter based on galois lattices. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp. 91–103. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22688-5_7
De Domenico, M., Lancichinetti, A., Arenas, A., Rosvall, M.: Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 5(1), 011027 (2015)
De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural Reducibility of multilayer networks. Nat. Commun. 6(6864), 1–9 (2015)
Ganter, B.: Two basic algorithms in concept analysis. In: Proceedings of Formal Concept Analysis, 8th International Conference, ICFCA 2010, Agadir, Morocco, 15–18 March 2010, pp. 312–340 (2010)
Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-based data mining with scaled labeled graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS-ConceptStruct 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27769-9_6
Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2
Ghawi, R., Pfeffer, J.: Characterizing movie genres using formal concept analysis. In: Alam, M., Braun, T., Yun, B. (eds.) ICCS 2020. LNCS (LNAI), vol. 12277, pp. 132–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57855-8_10
Ghawi, R., Pfeffer, J.: A community matching based approach to measuring layer similarity in multilayer networks. Soc. Netw. 68, 1–14 (2022)
Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences humaines 95, 5–18 (1986)
Ignatov, D.I.: Introduction to formal concept analysis and its applications in information retrieval and related fields. In: Braslavski, P., Karpov, N., Worring, M., Volkovich, Y., Ignatov, D.I. (eds.) RuSSIR 2014. CCIS, vol. 505, pp. 42–141. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25485-2_3
Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)
Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0_25
Kuznetsov, S.O.: Fitting pattern structures to knowledge discovery in big data. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS (LNAI), vol. 7880, pp. 254–266. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38317-5_17
Magnani, M., Micenková, B., Rossi, L.: Combinatorial analysis of multiple networks. CoRR, abs/1303.4986 (2013)
Newman, M.: Networks: An Introduction. Oxford University Press Inc, Oxford (2010)
Priss, U.: Formal concept analysis in information science. Annual Rev. Info. Sci. Technol. 40(1), 521–543 (2006)
Schoenfeld, M., Pfeffer, J.: Networks and context: algorithmic challenges for context-aware social network research. In: Ragozini, G., Vitale, M.P. (eds.) Challenges in Social Network Research. LNSN, pp. 115–130. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31463-7_8
Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34(suppl_1), D535–D539 (2006)
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ghawi, R., Pfeffer, J. (2022). Discovering Relational Implications in Multilayer Networks Using Formal Concept Analysis. In: Pardede, E., Delir Haghighi, P., Khalil, I., Kotsis, G. (eds) Information Integration and Web Intelligence. iiWAS 2022. Lecture Notes in Computer Science, vol 13635. Springer, Cham. https://doi.org/10.1007/978-3-031-21047-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-21047-1_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21046-4
Online ISBN: 978-3-031-21047-1
eBook Packages: Computer ScienceComputer Science (R0)