Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Named Entity Recognition for Information Extraction from Italian Procurement Documents: A Case Study

  • Conference paper
  • First Online:
Information Integration and Web Intelligence (iiWAS 2022)

Abstract

Both large and medium-sized companies are concerned with maintaining good procurement relationships with their preferred suppliers and engaging previously unknown ones. To this end, potentially interesting suppliers are periodically monitored and evaluated by interacting with them via e-procurement platforms. Such a task rapidly becomes time-consuming and error-prone since buyer-side users ask documents of different types to suppliers, before manually evaluating the compliance status of every single document. To overcome this problem, we integrated Information Extraction capabilities, based on supervised Named Entity Recognition (NER), in the EPICS e-procurement platform. The solution has been evaluated both quantitatively and qualitatively on real-world procurement documents. Results show that the proposed approach is able to achieve good information extraction accuracy concerning different procurement document categories written in the Italian language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://spacy.io.

  2. 2.

    https://doccano.github.io/doccano/.

References

  1. Ando, R.K., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005). http://jmlr.org/papers/v6/ando05a.html

  2. Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: NYMBLE: a high-performance learning name-finder. In: Fifth Conference on Applied Natural Language Processing, pp. 194–201. Association for Computational Linguistics, Washington, DC, March 1997. https://doi.org/10.3115/974557.974586, https://aclanthology.org/A97-1029

  3. Borthwick, A., Sterling, J., Agichtein, E., Grishman, R.: Exploiting diverse knowledge sources via maximum entropy in named entity recognition. In: Charniak, E. (ed.) Sixth Workshop on Very Large Corpora, VLC@COLING/ACL 1998, Montreal, Quebec, Canada, 15–16 August 1998 (1998). https://aclanthology.org/W98-1118/

  4. Chen, H., Yuan, S., Zhang, X.: Rose-NER: robust semi-supervised named entity recognition on insufficient labeled data. In: The 10th International Joint Conference on Knowledge Graphs. IJCKG 2021, pp. 38–44. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3502223.3502228

  5. Douzon, T., Duffner, S., Garcia, C., Espinas, J.: Improving information extraction on business documents with specific pre-training tasks. In: Uchida, S., Barney, E., Eglin, V. (eds.) DAS 2022. LNCS, vol. 13237, pp. 111–125. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06555-2_8

    Chapter  Google Scholar 

  6. Etzioni, O., et al.: Unsupervised named-entity extraction from the web: an experimental study. Artif. Intell. 165(1), 91–134 (2005). https://doi.org/10.1016/j.artint.2005.03.001

  7. Impedovo, A., Barracchia, E.P., Rizzo, G., Caprera, A., Landrò, E.: EPICS: pursuing the quest for smart procurement with artificial intelligence. In: Epifania, F., et al. (eds.) Proceedings of the 1st Italian Workshop on Artificial Intelligence and Applications for Business and Industries (AIABI 2021) Co-located with 20th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2021), Online, Originally held in Milan, Italy, 30 November 2021. CEUR Workshop Proceedings, vol. 3102. CEUR-WS.org (2021). http://ceur-ws.org/Vol-3102/paper3.pdf

  8. Iovine, A., Fang, A., Fetahu, B., Rokhlenko, O., Malmasi, S.: Cyclener: an unsupervised training approach for named entity recognition. In: Laforest, F., et al. (eds.) WWW 2022: The ACM Web Conference 2022, Virtual Event, Lyon, France, 25–29 April 2022, pp. 2916–2924. ACM (2022). https://doi.org/10.1145/3485447.3512012

  9. Kaplan, M.: May I ask who’s calling? Named entity recognition on call center transcripts for privacy law compliance. In: Xu, W., et al. (eds.) Proceedings of the Sixth Workshop on Noisy User-generated Text, W-NUT@EMNLP 2020 Online, 19 November 2020, pp. 1–6. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.wnut-1.1

  10. Krishnan, V., Manning, C.D.: An effective two-stage model for exploiting non-local dependencies in named entity recognition. In: Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pp. 1121–1128. Association for Computational Linguistics, Sydney, Australia, July 2006. https://doi.org/10.3115/1220175.1220316, https://aclanthology.org/P06-1141

  11. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Brodley, C.E., Danyluk, A.P. (eds.) Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001), Williams College, Williamstown, MA, USA, 28 June–1 July 2001, pp. 282–289. Morgan Kaufmann (2001)

    Google Scholar 

  12. Liao, W., Veeramachaneni, S.: A simple semi-supervised algorithm for named entity recognition. In: Proceedings of the NAACL HLT 2009 Workshop on Semi-Supervised Learning for Natural Language Processing, pp. 58–65. SemiSupLearn 2009. Association for Computational Linguistics, USA (2009)

    Google Scholar 

  13. Liu, C., Yu, Y., Li, X., Wang, P.: Named entity recognition in equipment support field using tri-training algorithm and text information extraction technology. IEEE Access 9, 126728–126734 (2021). https://doi.org/10.1109/ACCESS.2021.3109911

  14. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017(December), pp. 4–9, 2017. Long Beach, CA, pp. 4765–4774 (2017). https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

  15. Nadeau, D., Turney, P.D., Matwin, S.: Unsupervised named-entity recognition: generating gazetteers and resolving ambiguity. In: Lamontagne, L., Marchand, M. (eds.) AI 2006. LNCS (LNAI), vol. 4013, pp. 266–277. Springer, Heidelberg (2006). https://doi.org/10.1007/11766247_23

    Chapter  Google Scholar 

  16. Sekine, S., Grishman, R., Shinnou, H.: A decision tree method for finding and classifying names in Japanese texts. In: Charniak, E. (ed.) Sixth Workshop on Very Large Corpora, VLC@COLING/ACL 1998, Montreal, Quebec, Canada, 15–16 August 1998 (1998). https://aclanthology.org/W98-1120/

  17. Szarvas, G., Farkas, R., Kocsor, A.: A multilingual named entity recognition system using boosting and C4.5 decision tree learning algorithms. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 267–278. Springer, Heidelberg (2006). https://doi.org/10.1007/11893318_27

    Chapter  Google Scholar 

  18. Vukadin, D., Kurdija, A.S., Delac, G., Silic, M.: Information extraction from free-form CV documents in multiple languages. IEEE Access 9, 84559–84575 (2021). https://doi.org/10.1109/ACCESS.2021.3087913

  19. Xiao, L., Wissmann, D., Brown, M., Jablonski, S.: Information extraction from the web: system and techniques. Appl. Intell. 21(2), 195–224 (2004). https://doi.org/10.1023/B:APIN.0000033637.51909.04

  20. Zhang, S., Elhadad, N.: Unsupervised biomedical named entity recognition: experiments with clinical and biological texts. J. Biomed. Inform. 46(6), 1088–1098 (2013). https://doi.org/10.1016/j.jbi.2013.08.004, https://www.sciencedirect.com/science/article/pii/S1532046413001196, special Section: Social Media Environments

Download references

Acknowledgements

The EPICS (E-Procurement Innovation For Challenging Scenarios) project has been co-funded by Programma del Regolamento regionale della Puglia per gli aiuti in esenzione n. 17 del 30/09/2014 (BURP n. 139 suppl. del 06/10/2014) titolo II capo 2 del regolamento generale aiuti ai programmi integrati promossi da medie imprese ai sensi dell’articolo 26 del Regolamento.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Impedovo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Impedovo, A., Barracchia, E.P., Rizzo, G. (2022). Exploiting Named Entity Recognition for Information Extraction from Italian Procurement Documents: A Case Study. In: Pardede, E., Delir Haghighi, P., Khalil, I., Kotsis, G. (eds) Information Integration and Web Intelligence. iiWAS 2022. Lecture Notes in Computer Science, vol 13635. Springer, Cham. https://doi.org/10.1007/978-3-031-21047-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21047-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21046-4

  • Online ISBN: 978-3-031-21047-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics