@inproceedings{kaplan-2020-may,
title = "May {I} Ask Who`s Calling? Named Entity Recognition on Call Center Transcripts for Privacy Law Compliance",
author = "Kaplan, Micaela",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.1/",
doi = "10.18653/v1/2020.wnut-1.1",
pages = "1--6",
abstract = "We investigate using Named Entity Recognition on a new type of user-generated text: a call center conversation. These conversations combine problems from spontaneous speech with problems novel to conversational Automated Speech Recognition, including incorrect recognition, alongside other common problems from noisy user-generated text. Using our own corpus with new annotations, training custom contextual string embeddings, and applying a BiLSTM-CRF, we match state-of- the-art results on our novel task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kaplan-2020-may">
<titleInfo>
<title>May I Ask Who‘s Calling? Named Entity Recognition on Call Center Transcripts for Privacy Law Compliance</title>
</titleInfo>
<name type="personal">
<namePart type="given">Micaela</namePart>
<namePart type="family">Kaplan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate using Named Entity Recognition on a new type of user-generated text: a call center conversation. These conversations combine problems from spontaneous speech with problems novel to conversational Automated Speech Recognition, including incorrect recognition, alongside other common problems from noisy user-generated text. Using our own corpus with new annotations, training custom contextual string embeddings, and applying a BiLSTM-CRF, we match state-of- the-art results on our novel task.</abstract>
<identifier type="citekey">kaplan-2020-may</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.1</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.1/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1</start>
<end>6</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T May I Ask Who‘s Calling? Named Entity Recognition on Call Center Transcripts for Privacy Law Compliance
%A Kaplan, Micaela
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F kaplan-2020-may
%X We investigate using Named Entity Recognition on a new type of user-generated text: a call center conversation. These conversations combine problems from spontaneous speech with problems novel to conversational Automated Speech Recognition, including incorrect recognition, alongside other common problems from noisy user-generated text. Using our own corpus with new annotations, training custom contextual string embeddings, and applying a BiLSTM-CRF, we match state-of- the-art results on our novel task.
%R 10.18653/v1/2020.wnut-1.1
%U https://aclanthology.org/2020.wnut-1.1/
%U https://doi.org/10.18653/v1/2020.wnut-1.1
%P 1-6
Markdown (Informal)
[May I Ask Who’s Calling? Named Entity Recognition on Call Center Transcripts for Privacy Law Compliance](https://aclanthology.org/2020.wnut-1.1/) (Kaplan, WNUT 2020)
- May I Ask Who’s Calling? Named Entity Recognition on Call Center Transcripts for Privacy Law Compliance (Kaplan, WNUT 2020)
ACL
- Micaela Kaplan. 2020. May I Ask Who’s Calling? Named Entity Recognition on Call Center Transcripts for Privacy Law Compliance. In Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020), pages 1–6, Online. Association for Computational Linguistics.