Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

How Can Spherical CNNs Benefit ML-Based Diffusion MRI Parameter Estimation?

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2022)

Abstract

This paper demonstrates spherical convolutional neural networks (S-CNN) offer distinct advantages over conventional fully-connected networks (FCN) at estimating scalar parameters of tissue microstructure from diffusion MRI (dMRI). Such microstructure parameters are valuable for identifying pathology and quantifying its extent. However, current clinical practice commonly acquires dMRI data consisting of only 6 diffusion weighted images (DWIs), limiting the accuracy and precision of estimated microstructure indices. Machine learning (ML) has been proposed to address this challenge. However, existing ML-based methods are not robust to differing gradient schemes, nor are they rotation equivariant. Lack of robustness to differing gradient schemes requires a new network to be trained for each scheme, complicating the analysis of data from multiple sources. A possible consequence of the lack of rotational equivariance is that the training dataset must contain a diverse range of microstucture orientations. Here, we show spherical CNNs represent a compelling alternative that is robust to new gradient schemes as well as offering rotational equivariance. We show the latter can be leveraged to decrease the number of training datapoints required.

This work is supported by the EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging (EP/L016478/1), the Department of Health’s NIHR-funded Biomedical Research Centre at UCLH and the Wellcome Trust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aliotta, E., Nourzadeh, H., Sanders, J., Muller, D., Ennis, D.B.: Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks. Med. Phys. 46(4), 1581–1591 (2019). https://doi.org/10.1002/mp.13400

  2. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Resonan. Ser. B 103(3), 247–254 (1994). https://doi.org/10.1006/jmrb.1994.1037

  3. Bodini, B., Ciccarelli, O.: Diffusion MRI in Neurological Disorders. Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy, 2nd edn, pp. 241–255 (2014). https://doi.org/10.1016/B978-0-12-396460-1.00011-1

  4. Chen, G., et al.: Estimating tissue microstructure with undersampled diffusion data via graph convolutional neural networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 280–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_28

    Chapter  Google Scholar 

  5. Cobb, O.J., et al.: Efficient generalized spherical CNNs. In: ICLR 2021 (2021). https://arxiv.org/abs/2010.11661

  6. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical CNNs. In: ICLR 2018, January 2018. https://arxiv.org/abs/1801.10130

  7. Elaldi, A., Dey, N., Kim, H., Gerig, G.: Equivariant spherical deconvolution: learning sparse orientation distribution functions from spherical data. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 267–278. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_21

    Chapter  Google Scholar 

  8. Golkov, V., et al.: q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imaging 35(5), 1344–1351 (2016). https://doi.org/10.1109/TMI.2016.2551324

  9. Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42(3), 515–525 (1999). https://doi.org/10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q

    Article  Google Scholar 

  10. Jones, D.K.: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn. Reson. Med. 51(4), 807–815 (2004). https://doi.org/10.1002/mrm.20033

  11. Lin, Z., et al.: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network. Med. Phys. 46(7), 3101–3116, mp.13555 (2019). https://doi.org/10.1002/mp.13555

  12. Park, J., et al.: DIFFnet: diffusion parameter mapping network generalized for input diffusion gradient schemes and b-values. IEEE Trans. Med. Imaging 41(2), 491–499 (2022). https://doi.org/10.1109/TMI.2021.3116298

  13. Sedlar, S., Alimi, A., Papadopoulo, T., Deriche, R., Deslauriers-Gauthier, S.: A spherical convolutional neural network for white matter structure imaging via dMRI. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 529–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_50

    Chapter  Google Scholar 

  14. Skare, S., Hedehus, M., Moseley, M.E., Li, T.Q.: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J. Magn. Resonan. 147(2), 340–352 (2000). https://doi.org/10.1006/jmre.2000.2209

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Goodwin-Allcock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goodwin-Allcock, T., McEwen, J., Gray, R., Nachev, P., Zhang, H. (2022). How Can Spherical CNNs Benefit ML-Based Diffusion MRI Parameter Estimation?. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2022. Lecture Notes in Computer Science, vol 13722. Springer, Cham. https://doi.org/10.1007/978-3-031-21206-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21206-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21205-5

  • Online ISBN: 978-3-031-21206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics