Abstract
Sketches make an intuitive and powerful visual expression as they are fast executed freehand drawings. We present a method for synthesizing realistic photos from scene sketches. Without the need for sketch and photo pairs, our framework directly learns from readily available large-scale photo datasets in an unsupervised manner. To this end, we introduce a standardization module that provides pseudo sketch-photo pairs during training by converting photos and sketches to a standardized domain, i.e. the edge map. The reduced domain gap between sketch and photo also allows us to disentangle them into two components: holistic scene structures and low-level visual styles such as color and texture. Taking this advantage, we synthesize a photo-realistic image by combining the structure of a sketch and the visual style of a reference photo. Extensive experimental results on perceptual similarity metrics and human perceptual studies show the proposed method could generate realistic photos with high fidelity from scene sketches and outperform state-of-the-art photo synthesis baselines. We also demonstrate that our framework facilitates a controllable manipulation of photo synthesis by editing strokes of corresponding sketches, delivering more fine-grained details than previous approaches that rely on region-level editing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brejcha, J., Čadík, M.: GeoPose3K: mountain landscape dataset for camera pose estimation in outdoor environments. Image Vis. Comput. 66, 1–14 (2017)
Chen, S.Y., Su, W., Gao, L., Xia, S., Fu, H.: DeepFaceDrawing: deep generation of face images from sketches. ACM Trans. Graph. (TOG) 39(4), 72-1 (2020)
Chen, W., Hays, J.: SketchyGAN: towards diverse and realistic sketch to image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9416–9425 (2018)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: StarGAN v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8188–8197 (2020)
Delanoy, J., Aubry, M., Isola, P., Efros, A.A., Bousseau, A.: 3D sketching using multi-view deep volumetric prediction. Proc. ACM Comput. Graph. Interact. Tech. 1(1), 1–22 (2018)
Fu, H., et al.: 3D-front: 3D furnished rooms with layouts and semantics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10933–10942 (2021)
Gao, C., Liu, Q., Xu, Q., Wang, L., Liu, J., Zou, C.: SketchyCOCO: image generation from freehand scene sketches. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5174–5183 (2020)
Ghosh, A., et al.: Interactive sketch & fill: multiclass sketch-to-image translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1171–1180 (2019)
Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)
Guérin, É., et al.: Interactive example-based terrain authoring with conditional generative adversarial networks. ACM Trans. Graph. (TOG) 36(6), 1–13 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017)
Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 172–189 (2018)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
Kim, S., Kim, S., Kim, S.: Deep translation prior: test-time training for photorealistic style transfer. arXiv preprint arXiv:2112.06150 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)
Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35
Lee, H.Y., et al.: DRIT++: diverse image-to-image translation via disentangled representations. Int. J. Comput. Vision 128(10), 2402–2417 (2020)
Ling, H., Kreis, K., Li, D., Kim, S.W., Torralba, A., Fidler, S.: EditGAN: high-precision semantic image editing. Adv. Neural Inf. Process. Syst. 34, 16331–16345 (2021)
Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10551–10560 (2019)
Liu, R., Yu, Q., Yu, S.X.: Unsupervised sketch to photo synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 36–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_3
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)
Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: SDEdit: guided image synthesis and editing with stochastic differential equations. In: International Conference on Learning Representations (2021)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)
Park, T., et al.: Swapping autoencoder for deep image manipulation. Adv. Neural. Inf. Process. Syst. 33, 7198–7211 (2020)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)
Poma, X.S., Riba, E., Sappa, A.: Dense extreme inception network: towards a robust CNN model for edge detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1923–1932 (2020)
Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vision 40(1), 49–70 (2000)
Richardson, E., et al.: Encoding in style: a styleGAN encoder for image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2287–2296 (2021)
Tumanyan, N., Bar-Tal, O., Bagon, S., Dekel, T.: Splicing ViT features for semantic appearance transfer. arXiv preprint arXiv:2201.00424 (2022)
Viazovetskyi, Y., Ivashkin, V., Kashin, E.: StyleGAN2 distillation for feed-forward image manipulation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 170–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_11
Wang, J., Lin, J., Yu, Q., Liu, R., Chen, Y., Yu, S.X.: 3D shape reconstruction from free-hand sketches. arXiv preprint arXiv:2006.09694 (2020)
Wang, L., Qian, C., Wang, J., Fang, Y.: Unsupervised learning of 3D model reconstruction from hand-drawn sketches. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1820–1828 (2018)
Xiang, X., Liu, D., Yang, X., Zhu, Y., Shen, X., Allebach, J.P.: Adversarial open domain adaptation for sketch-to-photo synthesis. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1434–1444 (2022)
Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)
Zhang, L., Li, C., Simo-Serra, E., Ji, Y., Wong, T.T., Liu, C.: User-guided line art flat filling with split filling mechanism. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhou, Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D., Huang, H.: Non-stationary texture synthesis by adversarial expansion. arXiv preprint arXiv:1805.04487 (2018)
Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36
Zhu, S.C., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (frame): towards a unified theory for texture modeling. Int. J. Comput. Vision 27(2), 107–126 (1998)
Zou, C., et al.: SketchyScene: richly-annotated scene sketches. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 421–436 (2018)
Acknowledgements
This research was supported, in part, by BAIR-Amazon Commons and AWS. We thank Yubei Chen for helpful discussions. We thank Tian Qin for providing some scene sketches used in the study. We thank Li Tang, Lu Yuan, Martin Zhai, Xingchen Liu, Karl Hillesland, Amin Kheradmand, Nasim Souly, Charlotte Wang, Valerie Moss and other anonymous participants in our human perceptual study.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, J., Jeon, S., Yu, S.X., Zhang, X., Arora, H., Lou, Y. (2023). Unsupervised Scene Sketch to Photo Synthesis. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-25063-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25062-0
Online ISBN: 978-3-031-25063-7
eBook Packages: Computer ScienceComputer Science (R0)