Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unsupervised Scene Sketch to Photo Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13802))

Included in the following conference series:

Abstract

Sketches make an intuitive and powerful visual expression as they are fast executed freehand drawings. We present a method for synthesizing realistic photos from scene sketches. Without the need for sketch and photo pairs, our framework directly learns from readily available large-scale photo datasets in an unsupervised manner. To this end, we introduce a standardization module that provides pseudo sketch-photo pairs during training by converting photos and sketches to a standardized domain, i.e. the edge map. The reduced domain gap between sketch and photo also allows us to disentangle them into two components: holistic scene structures and low-level visual styles such as color and texture. Taking this advantage, we synthesize a photo-realistic image by combining the structure of a sketch and the visual style of a reference photo. Extensive experimental results on perceptual similarity metrics and human perceptual studies show the proposed method could generate realistic photos with high fidelity from scene sketches and outperform state-of-the-art photo synthesis baselines. We also demonstrate that our framework facilitates a controllable manipulation of photo synthesis by editing strokes of corresponding sketches, delivering more fine-grained details than previous approaches that rely on region-level editing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brejcha, J., Čadík, M.: GeoPose3K: mountain landscape dataset for camera pose estimation in outdoor environments. Image Vis. Comput. 66, 1–14 (2017)

    Article  Google Scholar 

  2. Chen, S.Y., Su, W., Gao, L., Xia, S., Fu, H.: DeepFaceDrawing: deep generation of face images from sketches. ACM Trans. Graph. (TOG) 39(4), 72-1 (2020)

    Google Scholar 

  3. Chen, W., Hays, J.: SketchyGAN: towards diverse and realistic sketch to image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9416–9425 (2018)

    Google Scholar 

  4. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: StarGAN v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8188–8197 (2020)

    Google Scholar 

  5. Delanoy, J., Aubry, M., Isola, P., Efros, A.A., Bousseau, A.: 3D sketching using multi-view deep volumetric prediction. Proc. ACM Comput. Graph. Interact. Tech. 1(1), 1–22 (2018)

    Article  Google Scholar 

  6. Fu, H., et al.: 3D-front: 3D furnished rooms with layouts and semantics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10933–10942 (2021)

    Google Scholar 

  7. Gao, C., Liu, Q., Xu, Q., Wang, L., Liu, J., Zou, C.: SketchyCOCO: image generation from freehand scene sketches. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5174–5183 (2020)

    Google Scholar 

  8. Ghosh, A., et al.: Interactive sketch & fill: multiclass sketch-to-image translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1171–1180 (2019)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  10. Guérin, É., et al.: Interactive example-based terrain authoring with conditional generative adversarial networks. ACM Trans. Graph. (TOG) 36(6), 1–13 (2017)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  13. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 172–189 (2018)

    Google Scholar 

  14. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  16. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  17. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  18. Kim, S., Kim, S., Kim, S.: Deep translation prior: test-time training for photorealistic style transfer. arXiv preprint arXiv:2112.06150 (2021)

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  20. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  21. Lee, H.Y., et al.: DRIT++: diverse image-to-image translation via disentangled representations. Int. J. Comput. Vision 128(10), 2402–2417 (2020)

    Article  Google Scholar 

  22. Ling, H., Kreis, K., Li, D., Kim, S.W., Torralba, A., Fidler, S.: EditGAN: high-precision semantic image editing. Adv. Neural Inf. Process. Syst. 34, 16331–16345 (2021)

    Google Scholar 

  23. Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10551–10560 (2019)

    Google Scholar 

  24. Liu, R., Yu, Q., Yu, S.X.: Unsupervised sketch to photo synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 36–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_3

    Chapter  Google Scholar 

  25. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  26. Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: SDEdit: guided image synthesis and editing with stochastic differential equations. In: International Conference on Learning Representations (2021)

    Google Scholar 

  27. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  28. Park, T., et al.: Swapping autoencoder for deep image manipulation. Adv. Neural. Inf. Process. Syst. 33, 7198–7211 (2020)

    Google Scholar 

  29. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  30. Poma, X.S., Riba, E., Sappa, A.: Dense extreme inception network: towards a robust CNN model for edge detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1923–1932 (2020)

    Google Scholar 

  31. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vision 40(1), 49–70 (2000)

    Article  MATH  Google Scholar 

  32. Richardson, E., et al.: Encoding in style: a styleGAN encoder for image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2287–2296 (2021)

    Google Scholar 

  33. Tumanyan, N., Bar-Tal, O., Bagon, S., Dekel, T.: Splicing ViT features for semantic appearance transfer. arXiv preprint arXiv:2201.00424 (2022)

  34. Viazovetskyi, Y., Ivashkin, V., Kashin, E.: StyleGAN2 distillation for feed-forward image manipulation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 170–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_11

    Chapter  Google Scholar 

  35. Wang, J., Lin, J., Yu, Q., Liu, R., Chen, Y., Yu, S.X.: 3D shape reconstruction from free-hand sketches. arXiv preprint arXiv:2006.09694 (2020)

  36. Wang, L., Qian, C., Wang, J., Fang, Y.: Unsupervised learning of 3D model reconstruction from hand-drawn sketches. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1820–1828 (2018)

    Google Scholar 

  37. Xiang, X., Liu, D., Yang, X., Zhu, Y., Shen, X., Allebach, J.P.: Adversarial open domain adaptation for sketch-to-photo synthesis. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1434–1444 (2022)

    Google Scholar 

  38. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  39. Zhang, L., Li, C., Simo-Serra, E., Ji, Y., Wong, T.T., Liu, C.: User-guided line art flat filling with split filling mechanism. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  40. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  41. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  42. Zhou, Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D., Huang, H.: Non-stationary texture synthesis by adversarial expansion. arXiv preprint arXiv:1805.04487 (2018)

  43. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  44. Zhu, S.C., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (frame): towards a unified theory for texture modeling. Int. J. Comput. Vision 27(2), 107–126 (1998)

    Article  Google Scholar 

  45. Zou, C., et al.: SketchyScene: richly-annotated scene sketches. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 421–436 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by BAIR-Amazon Commons and AWS. We thank Yubei Chen for helpful discussions. We thank Tian Qin for providing some scene sketches used in the study. We thank Li Tang, Lu Yuan, Martin Zhai, Xingchen Liu, Karl Hillesland, Amin Kheradmand, Nasim Souly, Charlotte Wang, Valerie Moss and other anonymous participants in our human perceptual study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Jeon, S., Yu, S.X., Zhang, X., Arora, H., Lou, Y. (2023). Unsupervised Scene Sketch to Photo Synthesis. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25063-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25062-0

  • Online ISBN: 978-3-031-25063-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics