Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Quasi-Newton Primal-Dual Algorithm with Line Search

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Abstract

Quasi-Newton methods refer to a class of algorithms at the interface between first and second order methods. They aim to progress as substantially as second order methods per iteration, while maintaining the computational complexity of first order methods. The approximation of second order information by first order derivatives can be expressed as adopting a variable metric, which for (limited memory) quasi-Newton methods is of type “identity ± low rank”. This paper continues the effort to make these powerful methods available for non-smooth systems occurring, for example, in large scale Machine Learning applications by exploiting this special structure. We develop a line search variant of a recently introduced quasi-Newton primal-dual algorithm, which adds significant flexibility, admits larger steps per iteration, and circumvents the complicated precalculation of a certain operator norm. We prove convergence, including convergence rates, for our proposed method and outperform related algorithms in a large scale image deblurring application.

We acknowledge funding by the ANR-DFG joint project TRINOM-DS under the number DFG OC150/5-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For example, the variable \(y^{k}\) defined in (12) is not the dual variable in Algorithm 1.

References

  1. Applegate, D., et al.: Practical large-scale linear programming using primal-dual hybrid gradient. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  2. Becker, S., Fadili, J.: A quasi-Newton proximal splitting method. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  3. Becker, S., Fadili, J., Ochs, P.: On quasi-Newton forward-backward splitting: proximal calculus and convergence. SIAM J. Optim. 29(4), 2445–2481 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bolte, J., Daniilidis, A., Lewis, A.: Tame functions are semismooth. Math. Program. 117(1), 5–19 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-newton matrices and their use in limited memory methods. Math. Program. 63(1), 129–156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. 159(1), 253–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clarke, F.H.: Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics (1990)

    Google Scholar 

  10. Combettes, P., Condat, L., Pesquet, J.C., Vu, B.: A forward-backward view of some primal-dual optimization methods in image recovery. In: IEEE International Conference on Image Processing (2014)

    Google Scholar 

  11. Combettes, P.L., Vũ, B.C.: Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 63(9), 1289–1318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis, D.: Convergence rate analysis of primal-dual splitting schemes. SIAM J. Optim. 25(3), 1912–1943 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fletcher, R.: Practical Methods of Optimization. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  14. Goldstein, T., Li, M., Yuan, X., Esser, E., Baraniuk, R.: Adaptive primal-dual hybrid gradient methods for saddle-point problems. arXiv:1305.0546 (2013)

  15. Kanzow, C., Lechner, T.: Globalized inexact proximal newton-type methods for nonconvex composite functions. Comput. Optim. Appl. 78, 377–410 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kanzow, C., Lechner, T.: Efficient regularized proximal quasi-Newton methods for large-scale nonconvex composite optimization problems. Technical report, University of Würzburg, Institute of Mathematics, January 2022

    Google Scholar 

  17. Karimi, S., Vavasis, S.: IMRO: a proximal quasi-Newton method for solving l1-regularized least squares problems. SIAM J. Optim. 27(2), 583–615 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, J.D., Sun, Y., Saunders, M.A.: Proximal Newton-type methods for minimizing composite functions. SIAM J. Optim. 24(3), 1420–1443 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51(2), 311–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Malitsky, Y., Pock, T.: A first-order primal-dual algorithm with linesearch. SIAM J. Optim. 28(1), 411–432 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Patrinos, P., Stella, L., Bemporad, A.: Forward-backward truncated Newton methods for convex composite optimization. arXiv:1402.6655 (2014)

  22. Polyak, B.: Introduction to optimization. Optimization Software (1987)

    Google Scholar 

  23. Schmidt, M., Kim, D., Sra, S.: Projected Newton-type methods in machine learning. In: Optimization for Machine Learning, no. 1 (2012)

    Google Scholar 

  24. Stella, L., Themelis, A., Patrinos, P.: Forward-backward quasi-Newton methods for nonsmooth optimization problems. Comput. Optim. Appl. 67(3), 443–487 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Valkonen, T.: A primal-dual hybrid gradient method for nonlinear operators with applications to MRI. Inverse Prob. 30(5), 055012 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission tomography. J. Am. Stat. Assoc. 80(389), 8–20 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, S., Fadili, J., Ochs, P.: Inertial quasi-newton methods for monotone inclusion: efficient resolvent calculus and primal-dual methods. arXiv:2209.14019 (2022)

  28. Wright, S., Nocedal, J.: Numerical Optimization. Springer, New York (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shida Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 228 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Fadili, J., Ochs, P. (2023). A Quasi-Newton Primal-Dual Algorithm with Line Search. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics