Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimization Bounds from Decision Diagrams in Haddock

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2023)

Abstract

We study the automatic generation of primal and dual bounds from decision diagrams in constraint programming. In particular, we expand the functionality of the Haddock system to optimization problems by extending its specification language to include an objective function. We describe how restricted decision diagrams can be compiled in Haddock similar to the existing relaxed decision diagrams. Together, they provide primal and dual bounds on the objective function, which can be seamlessly integrated into the constraint programming search. The entire process is automatic and only requires a high-level user model specification. We evaluate our method on the sequential ordering problem and compare the performance of Haddock to a dedicated decision diagram approach. The results show that Haddock achieves comparable results in similar time, demonstrating the viability of our automated decision diagram procedures for constraint optimization problems.

Laurent Michel—Synchrony Chair in Cybersecurity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a maximization, \(U^\downarrow (s_\top )\) and \(U^\uparrow (s_\bot )\) give the upper bound.

  2. 2.

    With a slight abuse of notation as we do not repeat the bounds on z and among since those properties are identical.

  3. 3.

    Source code located at https://github.com/IsaacRudich/PnB_SOP.

References

  1. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. J. Math. Comput. Model. 20(12), 97–123 (1994)

    Article  MATH  Google Scholar 

  2. Bergman, D., Cire, A.A., Van Hoeve, W.-J., Hooker, J.: Decision Diagrams for Optimization, vol. 1. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  3. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th European Conference on Artificial Intelligence, ECAI 2004, pp. 146–150, NLD, August 2004. IOS Press (2004)

    Google Scholar 

  5. Fischetti, M., Glover, F. Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005). https://doi.org/10.1007/s10107-004-0570-3

  6. Gentzel, R., Michel, L., van Hoeve, W.-J.: HADDOCK: a language and architecture for decision diagram compilation. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 531–547. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_31

    Chapter  Google Scholar 

  7. Gentzel, R., Michel, L., van Hoeve, W.-J.: Heuristics for MDD propagation in HADDOCK. In: 28th International Conference on Principles and Practice of Constraint Programming (CP 2022), vol. 235 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 24:1–24:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  8. Gillard, X., Coppé, V., Schaus, P., Cire, A.A.: Improving the filtering of branch-and-bound MDD solver. In: Stuckey, P.J. (ed.) CPAIOR 2021. LNCS, vol. 12735, pp. 231–247. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78230-6_15

    Chapter  MATH  Google Scholar 

  9. Pesant, G., Quimper, C., Zanarini, A.: Counting-based search: branching heuristics for constraint satisfaction problems. J. Artif. Intell. Res. 43, 173–210 (2012). https://doi.org/10.1613/jair.3463

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_23

    Chapter  Google Scholar 

  11. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Michel, L., Schaus, P., Van Hentenryck, P.: MiniCP: a lightweight solver for constraint programming. Math. Program. Comput. 13, 133–184 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8_15

    Chapter  Google Scholar 

  14. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_41

    Chapter  MATH  Google Scholar 

  15. Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  MATH  Google Scholar 

  16. Rudich, I., Cappart, Q., Rousseau, L.M.: Peel-and-bound: generating stronger relaxed bounds with multivalued decision diagrams. In: 28th International Conference on Principles and Practice of Constraint Programming (CP 2022), vol. 235 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  17. Van Hentenryck, P., Perron, L., Puget, J.F.: Search and Strategies in OPL. ACM Trans. Comput. Logic 1(2), 1–36 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Laurent Michel and Rebecca Gentzel were partially supported by Synchrony. Willem-Jan van Hoeve is partially supported by Office of Naval Research Grant No. N00014-21-1-2240 and National Science Foundation Award #1918102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Gentzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gentzel, R., Michel, L., van Hoeve, WJ. (2023). Optimization Bounds from Decision Diagrams in Haddock. In: Cire, A.A. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023. Lecture Notes in Computer Science, vol 13884. Springer, Cham. https://doi.org/10.1007/978-3-031-33271-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33271-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33270-8

  • Online ISBN: 978-3-031-33271-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics