Abstract
Time Series Classification (TSC) is an extensively researched field from which a broad range of real-world problems can be addressed obtaining excellent results. One sort of the approaches performing well are the so-called dictionary-based techniques. The Temporal Dictionary Ensemble (TDE) is the current state-of-the-art dictionary-based TSC approach. In many TSC problems we find a natural ordering in the labels associated with the time series. This characteristic is referred to as ordinality, and can be exploited to improve the methods performance. The area dealing with ordinal time series is the Time Series Ordinal Classification (TSOC) field, which is yet unexplored. In this work, we present an ordinal adaptation of the TDE algorithm, known as ordinal TDE (O-TDE). For this, a comprehensive comparison using a set of 18 TSOC problems is performed. Experiments conducted show the improvement achieved by the ordinal dictionary-based approach in comparison to four other existing nominal dictionary-based techniques.
This work has been partially subsidised by “Agencia Española de Investigación (España)” (grant ref.: PID2020-115454GB-C22/AEI/10.13039/501100011033). David Guijo-Rubio’s research has been subsidised by the University of Córdoba through grants to Public Universities for the requalification of the Spanish university system of the Ministry of Universities, financed by the European Union - NextGenerationEU (grant reference: UCOR01MS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 31(3), 606–660 (2017). https://doi.org/10.1007/s10618-016-0483-9
Benavoli, A., Corani, G., Mangili, F.: Should we really use post-hoc tests based on mean-ranks? J. Mach. Learn. Res. 17(1), 152–161 (2016). http://jmlr.org/papers/v17/benavoli16a.html
Buza, K., Koller, J., Marussy, K.: PROCESS: projection-based classification of electroencephalograph signals. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 91–100. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19369-4_9
Chu, W., Keerthi, S.S.: New approaches to support vector ordinal regression. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 145–152 (2005). https://doi.org/10.1145/1102351.1102370
Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Discov. 34, 1454–1495 (2020). https://doi.org/10.1007/s10618-020-00701-z
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006). http://jmlr.org/papers/v7/demsar06a.html
Fernandez-Navarro, F., Campoy-Munoz, P., de la Paz-Marin, M., Hervas-Martinez, C., Yao, X.: Addressing the EU sovereign ratings using an ordinal regression approach. IEEE Trans. Cybern. 43(6), 2228–2240 (2013). https://doi.org/10.1109/TSMCC.2013.2247595
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451
Guijo-Rubio, D., et al.: Ordinal regression algorithms for the analysis of convective situations over Madrid-Barajas airport. Atmos. Res. 236, 104798 (2020). https://doi.org/10.1016/j.atmosres.2019.104798
Guijo-Rubio, D., Gutiérrez, P.A., Bagnall, A., Hervás-Martínez, C.: Ordinal versus nominal time series classification. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp. 19–29. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65742-0_2
Guijo-Rubio, D., Gutiérrez, P.A., Bagnall, A., Hervás-Martínez, C.: Time series ordinal classification via shapelets. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020). https://doi.org/10.1109/IJCNN48605.2020.9207200
Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978). https://doi.org/10.1109/PROC.1978.10837
Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Discov. 28(4), 851–881 (2014). https://doi.org/10.1007/s10618-013-0322-1
Kurbalija, V., von Bernstorff, C., Burkhard, H.D., Nachtwei, J., Ivanović, M., Fodor, L.: Time-series mining in a psychological domain. In: Proceedings of the Fifth Balkan Conference in Informatics, pp. 58–63 (2012). https://doi.org/10.1145/2371316.2371328
Large, J., Bagnall, A., Malinowski, S., Tavenard, R.: On time series classification with dictionary-based classifiers. Intell. Data Anal. 23(5), 1073–1089 (2019). https://doi.org/10.3233/IDA-184333
Large, J., Kemsley, E.K., Wellner, N., Goodall, I., Bagnall, A.: Detecting forged alcohol non-invasively through vibrational spectroscopy and machine learning. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10937, pp. 298–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93034-3_24
Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15, 107–144 (2007). https://doi.org/10.1007/s10618-007-0064-z
Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-of-patterns representation. J. Intell. Inf. Syst. 39, 287–315 (2012). https://doi.org/10.1007/s10844-012-0196-5
Lines, J., Taylor, S., Bagnall, A.: Time series classification with hive-cote: the hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl. Discov. Data 12(5) (2018). https://doi.org/10.1145/3182382
Liu, Y., Wang, Y., Kong, A.W.K.: Pixel-wise ordinal classification for salient object grading. Image Vision Comput. 106 (2021). https://doi.org/10.1016/j.imavis.2020.104086
Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al.: Long short term memory networks for anomaly detection in time series. In: ESANN, vol. 2015, p. 89 (2015). https://api.semanticscholar.org/CorpusID:43680425
McCullagh, P.: Regression models for ordinal data. J. Roy. Stat. Soc. Ser. B (Methodol.) 42(2), 109–127 (1980). https://www.jstor.org/stable/2984952
Middlehurst, M., Large, J., Cawley, G., Bagnall, A.: The temporal dictionary ensemble (TDE) classifier for time series classification. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 660–676. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_38
Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., Bagnall, A.: Hive-cote 2.0: a new meta ensemble for time series classification. Mach. Learn. 110(11–12), 3211–3243 (2021). https://doi.org/10.1007/s10994-021-06057-9
Middlehurst, M., Vickers, W., Bagnall, A.: Scalable dictionary classifiers for time series classification. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A.J., Menezes, R., Allmendinger, R. (eds.) IDEAL 2019. LNCS, vol. 11871, pp. 11–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33607-3_2
Schäfer, P.: The boss is concerned with time series classification in the presence of noise. Data Min. Knowl. Discov. 29, 1505–1530 (2015). https://doi.org/10.1007/s10618-014-0377-7
Schäfer, P., Leser, U.: Fast and accurate time series classification with weasel. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 637–646 (2017). https://doi.org/10.1145/3132847.3132980
Schulz, E., Speekenbrink, M., Krause, A.: A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J. Math. Psychol. 85, 1–16 (2018). https://doi.org/10.1016/j.jmp.2018.03.001
Vargas, V.M., Gutiérrez, P.A., Rosati, R., Romeo, L., Frontoni, E., Hervás-Martínez, C.: Deep learning based hierarchical classifier for weapon stock aesthetic quality control assessment. Comput. Ind. 144, 103786 (2023). https://doi.org/10.1016/j.compind.2022.103786
Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585. IEEE (2017). https://doi.org/10.48550/arXiv.1611.06455
Zhou, Z., et al.: Methods to recognize depth of hard inclusions in soft tissue using ordinal classification for robotic palpation. IEEE Trans. Instrum. Meas. 71, 1–12 (2022). https://doi.org/10.1109/TIM.2022.3198765
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ayllón-Gavilán, R., Guijo-Rubio, D., Gutiérrez, P.A., Hervás-Martínez, C. (2023). A Dictionary-Based Approach to Time Series Ordinal Classification. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_44
Download citation
DOI: https://doi.org/10.1007/978-3-031-43078-7_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43077-0
Online ISBN: 978-3-031-43078-7
eBook Packages: Computer ScienceComputer Science (R0)