Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Robust Preprocessing Method for Measuring Image Visual Quality Using Log-Polar FFT Features

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14335))

  • 276 Accesses

Abstract

To register two images, existing methods normally estimate the parameters of an affine transform, and then perform an inverse affine transform to the test image by using the estimated parameters. Any metric can then be applied to the reference image and the normalized image. In this paper we propose a new method for measuring visual image quality which circumvents the need to estimate the parameters of the affine transform. Instead, we use the log-polar transform and the fast Fourier transform (FFT) to extract features that are invariant to translation, rotation, and scaling. We apply the existing structural similarity index measure (SSIM) to the two invariant feature images, where no inverse transform is needed. Experimental results show that our proposed method outperforms the standard metric, the mean SSIM (MSSIM), significantly in terms of visual quality scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  2. Rezazadeh, S., Coulombe, S.: Novel discrete wavelet transform framework for full reference image quality assessment. Signal, Image and Video Processing 7, 559–573 (2011)

    Article  Google Scholar 

  3. Rezazadeh, S., Coulombe, S.: A novel discrete wavelet domain error-based image quality metric with enhanced perceptual performance. Int. J. Comp. Electr. Eng. 4(3), 390–395 (2012)

    Article  Google Scholar 

  4. Qian, S.E., Chen, G.Y.: Four reduced-reference metrics for measuring hyperspectral images after spatial resolution enhancement, pp. 204–208. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vienna, Austria (2010)

    Google Scholar 

  5. Keller, K., Averbuch, A., Israeli, M.: Pseudo polar-based estimation of large translations, rotations, and scalings in images. IEEE Trans. Image Proc. 14(1), 12–22 (2005)

    Article  Google Scholar 

  6. Chen, G.Y., Coulombe, S.: An FFT-Based Visual Quality Metric Robust to Spatial Shift. In: The 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), Montreal, Quebec, Canada, pp. 372–376 (2012)

    Google Scholar 

  7. Chen, G.Y., Coulombe, S.: An image visual quality assessment method based on SIFT features. J. Pattern Recogn. Res. 1, 85–97 (2013)

    Google Scholar 

  8. Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Comparison of full-reference image quality models for optimization of image processing systems. Int. J. Comput. Vision 129, 1258–1281 (2021)

    Article  Google Scholar 

  9. Zhai, G., Min, X.: Perceptual image quality assessment: a survey. Sci. China Inf. Sci. 63, 211301 (2020)

    Article  Google Scholar 

  10. Okarma, K., Lech, P., Lukin, V.V.: Combined full-reference image quality metrics for objective assessment of multiply distorted images. Electronics 10, 2256 (2021)

    Article  Google Scholar 

  11. Liu, H., Guo, B., Feng, Z.: Pseudo-log-polar Fourier transform for image registration. IEEE Signal Process. Lett. 13(1), 17–20 (2006)

    Article  Google Scholar 

  12. Wolberg, G., Zokai, S.: Robust image registration using log-polar transform. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 493–496 (2000)

    Google Scholar 

  13. Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  14. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE image quality assessment database release 2, http://live.ece.utexas.edu/research/quality

  15. Kingsbury, N.G.: Complex wavelets for shift invariant analysis and filtering of signals. J. Appl. Comput. Harmon. Anal. 10(3), 234–253 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Krzyzak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, G.Y., Krzyzak, A., Valev, V. (2024). A Robust Preprocessing Method for Measuring Image Visual Quality Using Log-Polar FFT Features. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49552-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49551-9

  • Online ISBN: 978-3-031-49552-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics