Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Point Cloud Rendering via Multi-plane NeRF

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14496))

Included in the following conference series:

  • 1093 Accesses

Abstract

We propose a new neural point cloud rendering method by combining point cloud multi-plane projection and NeRF [12]. Existing point-based rendering methods often rely on the high-quality geometry of point clouds. Meanwhile, NeRF and its extensions usually query the RGB and volume density of each point through neural networks, thus leading to a low inference efficiency. In this paper, we project point features to multiple random depth planes and feed them into a 3D convolutional neural network to predict the RGB and volume density maps. Then we synthesize a novel view through volume rendering. Projecting point features to multiple planes reduces the impact of geometry error and improves the rendering efficiency. Experimental results on the DTU and ScanNet dataset show that our approach achieves state-of-the-art results. Our source code is available at https://github.com/Mayxmu/PCMP-NeRF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, S.G., et al.: Cost-effective broad learning-based ultrasound biomicroscopy with 3D reconstruction for ocular anterior segmentation. Multimed. Tools Appl. 80, 35105–35122 (2021)

    Article  Google Scholar 

  2. Aliev, K.-A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V.: Neural point-based graphics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XXII. LNCS, vol. 12367, pp. 696–712. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_42

    Chapter  Google Scholar 

  3. Bui, G., Le, T., Morago, B., Duan, Y.: Point-based rendering enhancement via deep learning. Vis. Comput. 34, 829–841 (2018)

    Article  Google Scholar 

  4. Chen, A., et al.: MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14124–14133 (2021)

    Google Scholar 

  5. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  6. Dai, P., Zhang, Y., Li, Z., Liu, S., Zeng, B.: Neural point cloud rendering via multi-plane projection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7830–7839 (2020)

    Google Scholar 

  7. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)

  8. Huang, X., Zhang, Y., Ni, B., Li, T., Chen, K., Zhang, W.: Boosting point clouds rendering via radiance mapping. arXiv preprint arXiv:2210.15107 (2022)

  9. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  10. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413 (2014)

    Google Scholar 

  11. Kopanas, G., Philip, J., Leimkühler, T., Drettakis, G.: Point-based neural rendering with per-view optimization. In: Computer Graphics Forum, vol. 40, pp. 29–43. Wiley Online Library (2021)

    Google Scholar 

  12. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  13. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15 (2022)

    Google Scholar 

  14. Qiu, J., Yin, Z.X., Cheng, M.M., Ren, B.: Rendering real-world unbounded scenes with cars by learning positional bias. Vis. Comput. 1–14 (2023)

    Google Scholar 

  15. Qiu, J., Zhu, Y., Jiang, P.T., Cheng, M.M., Ren, B.: RdNeRF: relative depth guided nerf for dense free view synthesis. Vis. Comput. 1–13 (2023)

    Google Scholar 

  16. Rakhimov, R., Ardelean, A.T., Lempitsky, V., Burnaev, E.: NPBG++: accelerating neural point-based graphics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15969–15979 (2022)

    Google Scholar 

  17. Rückert, D., Franke, L., Stamminger, M.: ADOP: approximate differentiable one-pixel point rendering. ACM Trans. Graph. (TOG) 41(4), 1–14 (2022)

    Google Scholar 

  18. Thalmann, N., Kim, J., Papagiannakis, G., Thalmann, D., Sheng, B.: Computer graphics for metaverse. Virtual Reality Intell. Hardw. 4, ii–iv (10 2022)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Wang, Y., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable surface splatting for point-based geometry processing. ACM Trans. Graph. 38(6), 1–14 (2019)

    Article  Google Scholar 

  21. Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: SynSin: end-to-end view synthesis from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7467–7477 (2020)

    Google Scholar 

  22. Xu, Q., et al.: Point-NeRF: point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5438–5448 (2022)

    Google Scholar 

  23. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 767–783 (2018)

    Google Scholar 

  24. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)

    Google Scholar 

  25. Zhang, Q., Baek, S.H., Rusinkiewicz, S., Heide, F.: Differentiable point-based radiance fields for efficient view synthesis. arXiv preprint arXiv:2205.14330 (2022)

  26. Zimny, D., Trzciński, T., Spurek, P.: Points2NeRF: generating neural radiance fields from 3D point cloud. arXiv preprint arXiv:2206.01290 (2022)

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Nos. 61972327, 62272402, 62372389), the Natural Science Foundation of Fujian Province (No. 2022J01001), and the Fundamental Research Funds for the Central Universities (No. 20720220037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonggui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, D., Cao, J., Chen, Z. (2024). Point Cloud Rendering via Multi-plane NeRF. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14496. Springer, Cham. https://doi.org/10.1007/978-3-031-50072-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50072-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50071-8

  • Online ISBN: 978-3-031-50072-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics