Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Blind Side Channel Analysis Against AEAD with a Belief Propagation Approach

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14530))

  • 214 Accesses

Abstract

This paper present two new attacks on two lightweight authenticated encryption with associated data (AEAD): Sparkle and \(\textsf{Elephant}\). These attacks are blind side channel analysis (BSCA). The leakage is considered as an Hamming weight (HW) with a Gaussian noise. In both attacks, a belief propagation (BP) algorithm is used to link the different leaks. Another objective is to present BSCA as a new tool for evaluating the robustness of a symmetric cryptographic primitive subfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. NIST. Lightweight Cryptography Standardization Process (2018)

    Google Scholar 

  2. Ouladj, M., Guilley, S.: Side-channel analysis of embedded systems. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77222-2

    Book  Google Scholar 

  3. NIST. Specification for the Advanced Encryption Standard. FIPS PUB 197 (2001)

    Google Scholar 

  4. Berti, F., et al.: A finer-grain analysis of the leakage (non) resilience of OCB. IACR T CHES (2022)

    Google Scholar 

  5. Sim, S.M., Jap, D., Bhasin, S.: Differential analysis aided power attack on (non-) linear feedback shift registers. IACR TCHES (2021)

    Google Scholar 

  6. Adomnicai, A., Masson, L., Fournier, J.J.A.: Practical algebraic side-channel attacks against ACORN. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 325–340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_20

    Chapter  Google Scholar 

  7. Banciu, V., Oswald, E., Whitnall, C.: Exploring the resilience of some lightweight ciphers against profiled single trace attacks. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 51–63. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_4

    Chapter  Google Scholar 

  8. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Elephant v2. NIST lightweight competition (2021)

    Google Scholar 

  9. Beierle, C., et al.: Schwaemm and esch: lightweight authenticated encryption and hashing using the sparkle permutation family. NIST Round 2 (2019)

    Google Scholar 

  10. Meraneh, M.H., Clavier, C., Le Bouder, H., Maillard, J., Thomas, G.: Blind side channel on the elephant LFSR (2022)

    Google Scholar 

  11. Maillard, J., Meraneh, A.H., Sarry, M., Clavier, C., Bouder, H.L., Thomas, G.: Blind side channel analysis on the Elephant LFSR extended version. In: In: Van Sinderen, M., Wijnhoven, F., Hammoudi, S., Samarati, P., Vimercati, S.D.C.d. (eds.) E-Business and Telecommunications. ICSBT SECRYPT 2022. Communications in Computer and Information Science, vol. 1849, pp. 20–42. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45137-9_2

  12. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  13. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission to the CAESAR Competition (2014)

    Google Scholar 

  14. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Dumbo, jumbo, and delirium: parallel authenticated encryption for the lightweight circus. IACR Trans. Symmetric Cryptology. 2020, 5–30 (2020)

    Google Scholar 

  15. Bernstein, D.J.: How to stretch random functions: Secur. Protected Counter Sums. J. Cryptol. (1999)

    Google Scholar 

  16. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight block ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 43–59. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_3

    Chapter  Google Scholar 

  17. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved masking for tweakable blockciphers with applications to authenticated encryption. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 263–293. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_11

    Chapter  Google Scholar 

  18. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_21

    Chapter  Google Scholar 

  19. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and secure authenticated encryption ciphers. IACR TCHES. (2018)

    Google Scholar 

  20. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0_19

    Chapter  Google Scholar 

  21. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  22. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  23. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27

    Chapter  Google Scholar 

  24. Samwel, N., Daemen, J.: DPA on hardware implementations of Ascon and Keyak. In: Computing Frontiers Conference. ACM (2017)

    Google Scholar 

  25. Linge, Y., Dumas, C., Lambert-Lacroix, S.: Using the joint distributions of a cryptographic function in side channel analysis. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 199–213. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_14

    Chapter  Google Scholar 

  26. Le Bouder, H., Lashermes, R., Linge, Y., Thomas, G., Zie, J.-Y.: A multi-round side channel attack on AES using belief propagation. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 199–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51966-1_13

    Chapter  Google Scholar 

  27. Clavier, C., Reynaud, L.: Improved blind side-channel analysis by exploitation of joint distributions of leakages. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 24–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_2

    Chapter  Google Scholar 

  28. Clavier, C., Reynaud, L., Wurcker, A.: Quadrivariate improved blind side-channel analysis on Boolean masked AES. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 153–167. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89641-0_9

    Chapter  Google Scholar 

  29. Yli-Mäyry, V., et al.: Diffusional side-channel leakage from unrolled lightweight block ciphers: a case study of power analysis on PRINCE. IEEE Trans. Inf. Forensics Secur. 16, 1351–1364 (2020)

    Google Scholar 

  30. Gallager, R.G.:. Low-density parity-check codes. IRE Trans. Inf. Theory 8, 21–28 (1962)

    Google Scholar 

  31. Gallager, R.G.: Low Density Parity check codes. PhD thesis, MIT, Cambridge, MA (1963)

    Google Scholar 

  32. Chung, S.-Y., Forney Jr, G.D., Richardson, T.J., Urbanke, R.L.: On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett. 5, 58–60 (2001)

    Google Scholar 

  33. Tanner, R.M.: A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27, 533–547 (1981)

    Google Scholar 

  34. Pearl, J.: Reverend bayes on inference engines: a distributed hierarchical approach. In: National Conference on Artificial Intelligence. AAAI Press (1982)

    Google Scholar 

  35. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_15

    Chapter  Google Scholar 

  36. Grosso, V., Standaert, F.-X.: ASCA, SASCA and DPA with enumeration: which one beats the other and when? In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 291–312. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_12

    Chapter  Google Scholar 

  37. Ouyang, W., Cham, W.K.: Fast algorithm for Walsh Hadamard transform on sliding windows. Trans. Pattern Anal. Mach. Intell. 32, 165–171 (2009)

    Google Scholar 

Download references

Acknowledgments

This research is part of the APCIL project found by the Brittany region. The authors would like to thank Laurent Toutain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Le Bouder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarry, M., Le Bouder, H., Maaloouf, E., Thomas, G. (2024). Blind Side Channel Analysis Against AEAD with a Belief Propagation Approach. In: Bhasin, S., Roche, T. (eds) Smart Card Research and Advanced Applications. CARDIS 2023. Lecture Notes in Computer Science, vol 14530. Springer, Cham. https://doi.org/10.1007/978-3-031-54409-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54409-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54408-8

  • Online ISBN: 978-3-031-54409-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics