Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

B-Human 2023 – Object and Gesture Detection

  • Conference paper
  • First Online:
RoboCup 2023: Robot World Cup XXVI (RoboCup 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14140))

Included in the following conference series:

  • 462 Accesses

Abstract

For winning a RoboCup Standard Platform League competition, a team needs to have sophisticated solutions for a number of robotics subproblems, ranging from the fields of computer vision and state estimation to decision-making and motion control. In this paper, we focus on three new solutions for different computer vision tasks that are based on Deep Learning. We do not provide an overview of the complete B-Human system. Such an overview is given in [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://labelstud.io/.

References

  1. Ficht, G., et al.: NimbRo-OP2X: adult-sized open-source 3D printed humanoid robot. In: Proceedings of the 18th IEEE-RAS International Conference on Humanoid Robots, Beijing, China (2018)

    Google Scholar 

  2. Fiedler, J., Laue, T.: Neural network-based joint angle prediction for the NAO robot. In: Buche, C., et al. (eds.) RoboCup 2023. LNAI, vol. 14140, pp. 66–77. Springer, Cham (2024)

    Google Scholar 

  3. Fiedler, N., Bestmann, M., Hendrich, N.: ImageTagger: an open source online platform for collaborative image labeling. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 162–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0_13

    Chapter  Google Scholar 

  4. Hasselbring, A., Baude, A.: Soccer field boundary detection using convolutional neural networks. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds.) RoboCup 2021. LNCS (LNAI), vol. 13132, pp. 202–213. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98682-7_17

    Chapter  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA (2016)

    Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA (2015)

    Google Scholar 

  7. Molnar, L.: Visual referee detection on NAO robots for RoboCup SPL 2022. Bachelor thesis, ETH Zürich (2022)

    Google Scholar 

  8. Poppinga, B., Laue, T.: JET-net: real-time object detection for mobile robots. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 227–240. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_18

    Chapter  Google Scholar 

  9. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. IEEE, Honolulu, HI (Jul 2017). https://doi.org/10.1109/CVPR.2017.690

  10. Reichenberg, P., Röfer, T.: Dynamic joint control for a humanoid walk. In: Buche, C., et al. (eds.) RoboCup 2023. LNAI, vol. 14140, pp. 125–227. Springer, Cham (2024)

    Google Scholar 

  11. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  12. RoboCup Technical Committee: Standard Platform League results (2023). https://spl.robocup.org/results-2023/

  13. RoboCup Technical Committee: RoboCup Standard Platform League (NAO) Technical Challenges (2023). https://spl.robocup.org/wp-content/uploads/SPL-Challenges-2023.pdf

  14. Röfer, T., et al.: B-Human code release documentation 2023 (2023). https://wiki.b-human.de/coderelease2023/

  15. Röfer, T., Laue, T., Hasselbring, A., Lienhoop, J., Meinken, Y., Reichenberg, P.: B-Human 2022 - more team play with less communication. In: Eguchi, A., Lau, N., Paetzel-Prüsmann, M., Wanichanon, T. (eds.) RoboCup 2022. LNAI, vol. 13561, pp. 287–299. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28469-4_24

    Chapter  Google Scholar 

  16. Schnekenburger, F., Scharffenberg, M., Wülker, M., Hochberg, U., Dorer, K.: Detection and localization of features on a soccer field with feedforward fully convolutional neural networks (FCNN) for the adult-size humanoid robot Sweaty. In: Proceedings of the 12th Workshop on Humanoid Soccer Robots at the 17th IEEE-RAS International Conference on Humanoid Robots, Birmingham, UK (2017)

    Google Scholar 

  17. Thielke, F., Hasselbring, A.: A JIT compiler for neural network inference. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 448–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_36

    Chapter  Google Scholar 

  18. Votel, R., Li, N.: Next-generation pose detection with MoveNet and TensorFlow.js (2021). https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Röfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Röfer, T., Laue, T., Hasselbring, A., Böse, F., Monnerjahn, L.M., van Lessen, K. (2024). B-Human 2023 – Object and Gesture Detection. In: Buche, C., Rossi, A., Simões, M., Visser, U. (eds) RoboCup 2023: Robot World Cup XXVI. RoboCup 2023. Lecture Notes in Computer Science(), vol 14140. Springer, Cham. https://doi.org/10.1007/978-3-031-55015-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55015-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55014-0

  • Online ISBN: 978-3-031-55015-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics