Abstract
For winning a RoboCup Standard Platform League competition, a team needs to have sophisticated solutions for a number of robotics subproblems, ranging from the fields of computer vision and state estimation to decision-making and motion control. In this paper, we focus on three new solutions for different computer vision tasks that are based on Deep Learning. We do not provide an overview of the complete B-Human system. Such an overview is given in [14].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Ficht, G., et al.: NimbRo-OP2X: adult-sized open-source 3D printed humanoid robot. In: Proceedings of the 18th IEEE-RAS International Conference on Humanoid Robots, Beijing, China (2018)
Fiedler, J., Laue, T.: Neural network-based joint angle prediction for the NAO robot. In: Buche, C., et al. (eds.) RoboCup 2023. LNAI, vol. 14140, pp. 66–77. Springer, Cham (2024)
Fiedler, N., Bestmann, M., Hendrich, N.: ImageTagger: an open source online platform for collaborative image labeling. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 162–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0_13
Hasselbring, A., Baude, A.: Soccer field boundary detection using convolutional neural networks. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds.) RoboCup 2021. LNCS (LNAI), vol. 13132, pp. 202–213. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98682-7_17
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA (2015)
Molnar, L.: Visual referee detection on NAO robots for RoboCup SPL 2022. Bachelor thesis, ETH Zürich (2022)
Poppinga, B., Laue, T.: JET-net: real-time object detection for mobile robots. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 227–240. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_18
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. IEEE, Honolulu, HI (Jul 2017). https://doi.org/10.1109/CVPR.2017.690
Reichenberg, P., Röfer, T.: Dynamic joint control for a humanoid walk. In: Buche, C., et al. (eds.) RoboCup 2023. LNAI, vol. 14140, pp. 125–227. Springer, Cham (2024)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031
RoboCup Technical Committee: Standard Platform League results (2023). https://spl.robocup.org/results-2023/
RoboCup Technical Committee: RoboCup Standard Platform League (NAO) Technical Challenges (2023). https://spl.robocup.org/wp-content/uploads/SPL-Challenges-2023.pdf
Röfer, T., et al.: B-Human code release documentation 2023 (2023). https://wiki.b-human.de/coderelease2023/
Röfer, T., Laue, T., Hasselbring, A., Lienhoop, J., Meinken, Y., Reichenberg, P.: B-Human 2022 - more team play with less communication. In: Eguchi, A., Lau, N., Paetzel-Prüsmann, M., Wanichanon, T. (eds.) RoboCup 2022. LNAI, vol. 13561, pp. 287–299. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28469-4_24
Schnekenburger, F., Scharffenberg, M., Wülker, M., Hochberg, U., Dorer, K.: Detection and localization of features on a soccer field with feedforward fully convolutional neural networks (FCNN) for the adult-size humanoid robot Sweaty. In: Proceedings of the 12th Workshop on Humanoid Soccer Robots at the 17th IEEE-RAS International Conference on Humanoid Robots, Birmingham, UK (2017)
Thielke, F., Hasselbring, A.: A JIT compiler for neural network inference. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 448–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_36
Votel, R., Li, N.: Next-generation pose detection with MoveNet and TensorFlow.js (2021). https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Röfer, T., Laue, T., Hasselbring, A., Böse, F., Monnerjahn, L.M., van Lessen, K. (2024). B-Human 2023 – Object and Gesture Detection. In: Buche, C., Rossi, A., Simões, M., Visser, U. (eds) RoboCup 2023: Robot World Cup XXVI. RoboCup 2023. Lecture Notes in Computer Science(), vol 14140. Springer, Cham. https://doi.org/10.1007/978-3-031-55015-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-55015-7_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55014-0
Online ISBN: 978-3-031-55015-7
eBook Packages: Computer ScienceComputer Science (R0)