Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning Automata-Based Complex Event Patterns in Answer Set Programming

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13779))

Included in the following conference series:

  • 106 Accesses

Abstract

Complex Event Recognition and Forecasting (CER/F) techniques attempt to detect, or even forecast ahead of time, event occurrences in streaming input using predefined event patterns. Such patterns are not always known in advance, or they frequently change over time, making machine learning techniques, capable of extracting such patterns from data, highly desirable in CER/F. Since many CER/F systems use symbolic automata to represent such patterns, we propose a family of such automata where the transition-enabling conditions are defined by Answer Set Programming (ASP) rules, and which, thanks to the strong connections of ASP to symbolic learning, are directly learnable from data. We present such a learning approach in ASP and an incremental version thereof that trades optimality for efficiency and is capable to scale to large datasets. We evaluate our approach on two CER datasets and compare it to state-of-the-art automata learning techniques, demonstrating empirically a superior performance, both in terms of predictive accuracy and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://potassco.org/.

  2. 2.

    https://www.infore-project.eu/.

  3. 3.

    Maximizing earliness for input rejection, in addition to acceptance, would also be possible by modifying the ASA interpreter to not handle rejection via the closed-world assumption, but via explicit, absorbing dead states, and adding appropriate regularization constraints.

  4. 4.

    https://learnlib.de/.

References

  1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event streams. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 147–160 (2008)

    Google Scholar 

  2. Alevizos, E., Artikis, A., Paliouras, G.: Complex event forecasting with prediction suffix trees. VLDB J. 31(1), 157–180 (2022)

    Article  Google Scholar 

  3. Alevizos, E., Skarlatidis, A., Artikis, A., Paliouras, G.: Probabilistic complex event recognition: a survey. ACM Comput. Surv. (CSUR) 50(5), 1–31 (2017)

    Article  Google Scholar 

  4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  5. Angluin, D., Eisenstat, S., Fisman, D.: Learning regular languages via alternating automata. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  6. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 427–445. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_23

    Chapter  Google Scholar 

  7. Cugola, G., Margara, A.: Tesla: a formally defined event specification language. In: Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems, pp. 50–61 (2010)

    Google Scholar 

  8. Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. (CSUR) 44(3), 15 (2012)

    Article  Google Scholar 

  9. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 47–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_3

    Chapter  Google Scholar 

  10. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards expressive publish/subscribe systems. In: International Conference on Extending Database Technology, pp. 627–644. Springer (2006)

    Google Scholar 

  11. Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M., et al.: Cayuga: a general purpose event monitoring system. In: Cidr, vol. 7, pp. 412–422 (2007)

    Google Scholar 

  12. Diao, Y., Immerman, N., Gyllstrom, D.: Sase+: an agile language for kleene closure over event streams. UMass Technical Report (2007)

    Google Scholar 

  13. Drews, S., D’Antoni, L.: Learning symbolic automata. In: International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 173–189. Springer (2017)

    Google Scholar 

  14. Fisman, D., Frenkel, H., Zilles, S.: Inferring symbolic automata (2021). arXiv preprint arXiv:2112.14252

  15. Furelos-Blanco, D., Law, M., Jonsson, A., Broda, K., Russo, A.: Induction and exploitation of subgoal automata for reinforcement learning. J. Artif. Intell. Res. 70, 1031–1116 (2021)

    Article  MathSciNet  Google Scholar 

  16. Giantamidis, G., Tripakis, S., Basagiannis, S.: Learning moore machines from input-output traces. Int. J. Softw. Tools Technol. Transfer 23(1), 1–29 (2021)

    Article  Google Scholar 

  17. Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., Garofalakis, M.N.: Complex event recognition in the big data era: a survey. VLDB J. 29(1), 313–352 (2020)

    Article  Google Scholar 

  18. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)

    Article  MathSciNet  Google Scholar 

  19. Grez, A., Riveros, C., Ugarte, M.: A formal framework for complex event processing. In: 22nd International Conference on Database Theory (ICDT 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  20. De la Higuera, C.: Grammatical inference: learning automata and grammars. Cambridge University Press (2010)

    Google Scholar 

  21. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one dfa learning competition and a new evidence-driven state merging algorithm. In: International Colloquium on Grammatical Inference. pp. 1–12. Springer (1998)

    Google Scholar 

  22. Letort, G., Montagud, A., Stoll, G., Heiland, R., Barillot, E., Macklin, P., Zinovyev, A., Calzone, L.: Physiboss: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling. Bioinformatics 35(7), 1188–1196 (2019)

    Article  Google Scholar 

  23. Lifschitz, V.: Answer set programming. Springer (2019)

    Google Scholar 

  24. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11 (2003)

    Google Scholar 

  25. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  26. Maler, O., Mens, I.-E.: A generic algorithm for learning symbolic automata from membership queries. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 146–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_8

    Chapter  Google Scholar 

  27. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive learning: application to grammatical inference. Mach. Learn. 94(1), 25–49 (2014)

    Article  MathSciNet  Google Scholar 

  28. Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. In: Advances in Structural and Syntactic Pattern Recognition, pp. 99–108. World Scientific (1992)

    Google Scholar 

  29. Pietzuch, P.R., Shand, B., Bacon, J.: A framework for event composition in distributed systems. In: Endler, M., Schmidt, D. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 62–82. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44892-6_4

    Chapter  Google Scholar 

  30. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event processing with query rewriting. In: Proceedings of the Third ACM International Conference on Distributed Event-Based Systems, pp. 1–12 (2009)

    Google Scholar 

  31. Shvo, M., Li, A.C., Icarte, R.T., McIlraith, S.A.: Interpretable sequence classification via discrete optimization. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), pp. 9647–9656 (2021)

    Google Scholar 

  32. Smetsers, R., Fiterău-Broştean, P., Vaandrager, F.: Model learning as a satisfiability modulo theories problem. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp. 182–194. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77313-1_14

    Chapter  Google Scholar 

  33. Ulyantsev, V., Zakirzyanov, I., Shalyto, A.: Bfs-based symmetry breaking predicates for dfa identification. In: International Conference on Language and Automata Theory and Applications. pp. 611–622. Springer (2015)

    Google Scholar 

  34. Wieczorek, W.: Grammatical Inference. Springer (2017)

    Google Scholar 

  35. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 407–418 (2006)

    Google Scholar 

  36. Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of expensive queries in complex event processing. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 217–228 (2014)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the project entitled “ARIADNE - AI Aided D-band Network for 5G Long Term Evolution”, which has received funding from the European Union’s Horizon 2020 research & innovation programme under grant agreement No 871464, and by the project entitled “INFORE: Interactive Extreme-Scale Analytics and Forecasting”, which has received funding from the European Union’s Horizon 2020 research & innovation programme under grant agreement No 825070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Katzouris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katzouris, N., Paliouras, G. (2024). Learning Automata-Based Complex Event Patterns in Answer Set Programming. In: Muggleton, S.H., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2022. Lecture Notes in Computer Science(), vol 13779. Springer, Cham. https://doi.org/10.1007/978-3-031-55630-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55630-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55629-6

  • Online ISBN: 978-3-031-55630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics