Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploring Spreaders in a Retweet Network: A Case from the 2023 Kahramanmaraş Earthquake Sequence

  • Conference paper
  • First Online:
Emerging Trends and Applications in Artificial Intelligence ( ICETAI 2023)

Abstract

Two massive earthquakes struck Kahramanmaraş district of Türkiye on 6 February 2023, leaving loss of life and damage in a catastrophic scale. Many blamed the government for its inefficiency in dealing with the disaster. #devletyok (there is no government) was a hashtag used in the aftermath in social networking sites. We analyze the retweet network around the hashtag on 24th February, two weeks after the disaster, and aim to extract topological characteristics of the network, the influential spreaders in the network and the source of the diffusion. We make use of centrality measures, the HITS algorithm, PageRank algorithm and the k-shell decomposition in order to detect the influential spreaders. The social network analysis here is different from much of the previous research in that we explore the central roles in an information diffusion on a network, where all nodes are active, representing an already diffused information. In-degree centrality, betweenness centrality and HITS algorithm provide useful results in detecting spreaders in our network, while closeness centrality, PageRank and k-shell decomposition supply no additional knowledge. We figure out three nodes in the network with central roles in the diffusion, one being the source node. Checking the account of this source node reveals an anonymous user, who does not declare his/her identity. The study here has useful future implications for political and governmental studies. Moreover, the procedure applied to detect influential spreaders has many potential use cases in other fields such as marketing and sociology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, B., Xu, T., Liu, Q., Chen, E.-H.: Study on information diffusion analysis in social networks and its applications. Int. J. Autom. Comput. 15(4), 377–401 (2018). https://doi.org/10.1007/s11633-018-1124-0

    Article  Google Scholar 

  2. Hansen, D.L., Shneiderman, B., Smith, M.A., Himelboim, I.: Social network analysis: measuring, mapping, and modeling collections of connections. In: Hansen, D.L., Shneiderman, B., Smith, M.A., Himelboim, I. (eds.) Analyzing Social Media Networks with NodeXL, 2nd edn, ch. 3, pp. 31–51. Morgan Kaufmann (2020)

    Google Scholar 

  3. Kleinberg, J.M.: Hubs, authorities, and communities. ACM Comput. Surv. 31(4es), (1999)

    Google Scholar 

  4. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010). https://doi.org/10.1038/nphys1746

    Article  Google Scholar 

  5. Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on Twitter based on temporal and social terms evaluation. In: MDMKDD 2010, Washington, DC, USA, 25 July 2010. ACM (2010). https://doi.org/10.1145/1814245.1814249

  6. Al-Garadi, M.A., et al.: Analysis of online social network connections for identification of influential users. ACM Comput. Surv. 51(1), 1–37 (2019). https://doi.org/10.1145/3155897

    Article  Google Scholar 

  7. Morone, F., Min, B., Bo, L., Mari, R., Makse, H.A.: Collective influence algorithm to find influencers via optimal percolation in massively large social media. Sci. Rep. 6(1), 30062 (2016). https://doi.org/10.1038/srep30062

    Article  Google Scholar 

  8. Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65–68 (2015). https://doi.org/10.1038/nature14604

    Article  Google Scholar 

  9. Al-Garadi, M.A., Varathan, K.D., Ravana, S.D., Ahmed, E., Chang, V.: Identifying the influential spreaders in multilayer interactions of online social networks. J. Intell. Fuzzy Syst. 31(5), 2721–2735 (2016). https://doi.org/10.3233/jifs-169112

    Article  Google Scholar 

  10. Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network. In: IEEE Second International Conference on Social Computing. IEEE (2010). https://doi.org/10.1109/socialcom.2010.33

  11. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media?. ACM (2010). https://doi.org/10.1145/1772690.1772751. https://doi.org/10.1145/1772690.1772751

  12. Bastos, M.T., Raimundo, R.L.G., Travitzki, R.: Gatekeeping Twitter: message diffusion in political hashtags. Media Cult. Soc. 35(2), 260–270 (2013). https://doi.org/10.1177/0163443712467594

    Article  Google Scholar 

  13. Lee, K., Mahmud, J., Chen, J., Zhou, M., Nichols, J.: Who will retweet this?. ACM (2014). https://doi.org/10.1145/2557500.2557502

  14. Tsugawa, S.: Empirical analysis of the relation between community structure and cascading retweet diffusion. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 13, pp. 493–504 (2019).https://doi.org/10.1609/icwsm.v13i01.3247

  15. Morales, A.J., Borondo, J., Losada, J.C., Benito, R.M.: Efficiency of human activity on information spreading on Twitter. Soc. Netw. 39, 1–11 (2014). https://doi.org/10.1016/j.socnet.2014.03.007

    Article  Google Scholar 

  16. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 20 August 2006. ACM (2006). https://doi.org/10.1145/1150402.1150476

  17. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 9(6), (2014)

    Google Scholar 

  18. Sala, A., Zheng, H., Zhao, B.Y., Gaito, S., Rossi, G.P.: Brief announcement. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, 25 July 2010. ACM (2010). https://doi.org/10.1145/1835698.1835791

  19. Halberstam, Y., Knight, B.: Homophily, group size, and the diffusion of political information in social networks: evidence from Twitter. J. Public Econ. 143, 73–88 (2016)

    Google Scholar 

  20. Mochalova, A., Nanopoulos, A.: On the role of centrality in information diffusion in social networks. In: ECIS 2013 Completed Research (2013)

    Google Scholar 

  21. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, 12 August 2007. ACM (2007). https://doi.org/10.1145/1348549.1348556

  22. Deborah, A., Michela, A., Anna, C.: How to quantify social media influencers: an empirical application at the Teatro alla Scala. Heliyon 5(5), e01677 (2019). https://doi.org/10.1016/j.heliyon.2019.e01677

  23. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content in social media. Presented at the Proceedings of the 2008 International Conference on Web Search and Data Mining, Palo Alto, California, USA (2008)

    Google Scholar 

  24. Boster, F.J., Kotowski, M.R., Andrews, K.R., Serota, K.: Identifying influence: development and validation of the connectivity, persuasiveness, and maven scales. J. Commun. 61(1), 178–196 (2011). https://doi.org/10.1111/j.1460-2466.2010.01531.x

    Article  Google Scholar 

  25. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999). https://doi.org/10.1145/324133.324140

    Article  MathSciNet  Google Scholar 

  26. Kong, Y.-X., Shi, G.-Y., Wu, R.-J., Zhang, Y.-C.: k-core: theories and applications. Phys. Rep. 832, 1–32 (2019)

    Google Scholar 

  27. Vladimir, B., Matjaz, Z.: An O (m) algorithm for cores decomposition of networks. arXiv preprint arXiv:cs/0310049 (2003)

  28. Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016). https://doi.org/10.1016/j.physrep.2016.06.007

    Article  MathSciNet  Google Scholar 

  29. Li, Z., Huang, X.: Identifying influential spreaders by gravity model considering multi-characteristics of nodes. Sci. Rep. 12(1), (2022). https://doi.org/10.1038/s41598-022-14005-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Adak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adak, Z., Çetinkaya, A. (2024). Exploring Spreaders in a Retweet Network: A Case from the 2023 Kahramanmaraş Earthquake Sequence. In: García Márquez, F.P., Jamil, A., Hameed, A.A., Segovia Ramírez, I. (eds) Emerging Trends and Applications in Artificial Intelligence. ICETAI 2023. Lecture Notes in Networks and Systems, vol 960. Springer, Cham. https://doi.org/10.1007/978-3-031-56728-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56728-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56727-8

  • Online ISBN: 978-3-031-56728-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics