Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Crypto Dark Matter on the Torus

Oblivious PRFs from Shallow PRFs and TFHE

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2024 (EUROCRYPT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14656))

  • 828 Accesses

Abstract

Partially Oblivious Pseudorandom Functions (POPRFs) are 2-party protocols that allow a client to learn pseudorandom function (PRF) evaluations on inputs of its choice from a server. The client submits two inputs, one public and one private. The security properties ensure that the server cannot learn the private input, and the client cannot learn more than one evaluation per POPRF query. POPRFs have many applications including password-based key exchange and privacy-preserving authentication mechanisms. However, most constructions are based on classical assumptions, and those with post-quantum security suffer from large efficiency drawbacks.

In this work, we construct a novel POPRF from lattice assumptions and the “Crypto Dark Matter” PRF candidate (TCC’18) in the random oracle model. At a conceptual level, our scheme exploits the alignment of this family of PRF candidates, relying on mixed modulus computations, and programmable bootstrapping in the torus fully homomorphic encryption scheme (TFHE). We show that our construction achieves malicious client security based on circuit-private FHE, and client privacy from the semantic security of the FHE scheme. We further explore a heuristic approach to extend our scheme to support verifiability, based on the difficulty of computing cheating circuits in low depth. This would yield a verifiable (P)OPRF. We provide a proof-of-concept implementation and preliminary benchmarks of our construction. For the core online OPRF functionality, we require amortised 10.0 KB communication per evaluation and a one-time per-client setup communication of 2.5 MB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The security of the PRF candidate in [11] rests on the absence of any low-degree polynomial interpolating it, ruling out efficient implementations using FHE schemes that only provide additions and multiplications.

  2. 2.

    These are: plaintext moduli that are not powers of two, circuit privacy, ciphertext and bootstrapping-key compression.

  3. 3.

    We note that while the large sizes for achieving malicious security in [2] can be avoided using improved NIZKs, the semi-honest base size of 2 MB per query stems from requiring \(q\approx 2^{256}\) for statistical correctness and security arguments.

  4. 4.

    We note that quantum algorithms offer only marginal, i.e. less than square-root, speedups here [3].

  5. 5.

    This allows to restrict the number of sequential bootstrappings that can be performed.

  6. 6.

    As it stands, this strong PRF candidate maps zero to zero and is thus trivially distinguished from a random function, we will address this below.

  7. 7.

    If the reader’s PDF viewer does not support PDF attachments (e.g. Preview on MacOS does not), then e.g. pdfdetach can be used to extract these files.

  8. 8.

    Note that we may pick \(q \ne 3\) but require \(p=2\).

  9. 9.

    All of these figures assume that we apply public-key compression.

  10. 10.

    \(F_\textsf{poprf}.\textsf{Request}\) runs in \(28.9\) ms and \(F_\textsf{poprf}.\textsf{Finalise}\) in \(0.2\) ms in our benchmarks. The former does not include the time to prove well-formedness, but – as below – we do not expect this to radically change this picture.

  11. 11.

    Table 3 of [40] reports an overhead of 5x to 10x for circuit privacy.

  12. 12.

    On a single core, server blind evaluation took \(7.1\) s.

References

  1. Albrecht, M.R., Davidson, A., Deo, A., Gardham, D.: Crypto dark matter on the Torus: oblivious PRFs from shallow PRFs and FHE. Cryptology ePrint Archive, Report 2023/232 (2023). https://eprint.iacr.org/2023/232

  2. Albrecht, M.R., Davidson, A., Deo, A., Smart, N.P.: Round-optimal verifiable oblivious pseudorandom functions from ideal lattices. In: Garay [30], pp. 261–289 (2019). https://eprint.iacr.org/2019/1271

  3. Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Estimating quantum speedups for lattice sieves. In: Moriai and Wang [47], pp. 583–613 (2020)

    Google Scholar 

  4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

    Article  MathSciNet  Google Scholar 

  5. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Chapter  Google Scholar 

  6. Basso, A.: A post-quantum round-optimal oblivious PRF from isogenies. Cryptology ePrint Archive, Report 2023/225 (2023). https://eprint.iacr.org/2023/225

  7. Basso, A., Kutas, P., Merz, S.-P., Petit, C., Sanso, A.: Cryptanalysis of an oblivious PRF from supersingular isogenies. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 160–184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_6

    Chapter  Google Scholar 

  8. Van Beirendonck, M., D’Anvers, J.-P., Verbauwhede, I.: FPT: a fixed-point accelerator for torus fully homomorphic encryption. Cryptology ePrint Archive, Report 2022/1635 (2022). https://eprint.iacr.org/2022/1635

  9. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  10. Beullens, W., Seiler, G.: LaBRADOR: compact proofs for R1CS from module-SIS. Cryptology ePrint Archive, Report 2022/1341 (2022). https://eprint.iacr.org/2022/1341

  11. Boneh, D., Ishai, Y., Passelègue, A., Sahai, A., Wu, D.J.: Exploring crypto dark matter: new simple PRF candidates and their applications. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II, vol. 11240. LNCS, pp. 699–729. Springer, Heidelberg (2018). Full version available at https://eprint.iacr.org/2018/1218

  12. Boneh, D., Kogan, D., Woo, K.: Oblivious pseudorandom functions from isogenies. In: Moriai and Wang [47], pp. 520–550 (2020)

    Google Scholar 

  13. Bourse, F., del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. Part II, volume 9815 of LNCS, pp. 62–89. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  14. Boyle, E., et al.: Correlated pseudorandomness from expand-accumulate codes. In: Dodis and Shrimpton [24], pp. 603–633 (2022)

    Google Scholar 

  15. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. Cryptology ePrint Archive, Report 2011/277 (2011). https://eprint.iacr.org/2011/277

  16. Casacuberta, S., Hesse, J., Lehmann, A.: SoK: oblivious pseudorandom functions. In: 7th IEEE European Symposium on Security and Privacy, EuroS &P 2022, pp. 625–646. IEEE (2022)

    Google Scholar 

  17. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient homomorphic conversion between (Ring) LWE ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021, Part I. LNCS, vol. 12726, pp. 460–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78372-3_18

    Chapter  Google Scholar 

  18. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic encryption with malicious security. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1223–1237. ACM Press, October 2018

    Google Scholar 

  19. Cheon, J.H., Cho, W., Kim, J.H., Kim, J.: Adventures in crypto dark matter: attacks and fixes for weak pseudorandom functions. In: Garay [30], pp. 739–760 (2020)

    Google Scholar 

  20. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  21. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

    Article  MathSciNet  Google Scholar 

  22. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass: bypassing internet challenges anonymously. PoPETs 2018(3), 164–180 (2018)

    Article  Google Scholar 

  23. Dinur, I., et al.: MPC-friendly symmetric cryptography from alternating moduli: candidates, protocols, and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 517–547. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_18

    Chapter  Google Scholar 

  24. Dodis, Y., Shrimpton, T. (eds.): CRYPTO 2022, Part II. LNCS, vol. 13508. Springer, Heidelberg (2022)

    Google Scholar 

  25. Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 294–310. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_12

    Chapter  Google Scholar 

  26. Ducas, L., van Woerden, W.: NTRU fatigue: how stretched is overstretched? In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_1

    Chapter  Google Scholar 

  27. Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The Pythia PRF service. In: Jung, J., Holz, T. (eds.) USENIX Security 2015, pp. 547–562. USENIX Association, August 2015

    Google Scholar 

  28. Faller, S., Ottenhues, A., Ernst, J.: Composable oblivious pseudo-random functions via garbled circuits. Cryptology ePrint Archive, Paper 2023/1176 (2023). https://eprint.iacr.org/2023/1176

  29. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

  30. Garay, J. (ed.): PKC 2021, Part II. LNCS, vol. 12711. Springer, Heidelberg (2021)

    Google Scholar 

  31. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009). crypto.stanford.edu/craig

  32. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  33. Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  34. Heimberger, L., Meisingseth, F., Rechberger, C.: OPRFs from isogenies: designs and analysis. Cryptology ePrint Archive, Paper 2023/639 (2023). https://eprint.iacr.org/2023/639

  35. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a new high speed public key cryptosystem. Draft Distributed at Crypto (1996). http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf

  36. Jarecki, S., Krawczyk, H., Resch, J.: Threshold partially-oblivious PRFs with applications to key management. Cryptology ePrint Archive, Report 2018/733 (2018). https://eprint.iacr.org/2018/733

  37. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_15

    Chapter  Google Scholar 

  38. Joye, M.: Guide to fully homomorphic encryption over the [discretized] torus. Cryptology ePrint Archive, Report 2021/1402 (2021). https://eprint.iacr.org/2021/1402

  39. Kim, A., Lee, Y., Deryabin, M., Eom, J., Choi, R.: LFHE: fully homomorphic encryption with bootstrapping key size less than a megabyte. Cryptology ePrint Archive, Paper 2023/767 (2023). https://eprint.iacr.org/2023/767

  40. Kluczniak, K.: Circuit privacy for FHEW/TFHE-style fully homomorphic encryption in practice. Cryptology ePrint Archive, Report 2022/1459 (2022). https://eprint.iacr.org/2022/1459

  41. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. DCC 75(3), 565–599 (2015)

    MathSciNet  Google Scholar 

  42. Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign evaluation using FHEW/TFHE bootstrapping. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. Part II, vol. 13792. LNCS, pp. 130–160. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22966-4_5

  43. Lyubashevsky, V., et al.: CRYSTALS-Dilithium. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  44. Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge proofs and applications: shorter, simpler, and more general. In: Dodis and Shrimpton [24], pp. 71–101 (2022)

    Google Scholar 

  45. MATZOV. Report on the Security of LWE: Improved Dual Lattice Attack, April 2022. https://doi.org/10.5281/zenodo.6412487

  46. Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. Cryptology ePrint Archive, Report 2020/086 (2020). https://eprint.iacr.org/2020/086

  47. Moriai, S., Wang, H. (eds.): ASIACRYPT 2020, Part II. LNCS, vol. 12492. Springer, Heidelberg (2020)

    Google Scholar 

  48. Seres, I.A., Horváth, M., Burcsi, P.: The Legendre pseudorandom function as a multivariate quadratic cryptosystem: security and applications. Cryptology ePrint Archive, Report 2021/182 (2021). https://eprint.iacr.org/2021/182

  49. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

    Chapter  Google Scholar 

  50. Stein, W., et al.: Sage Mathematics Software Version 9.8. The Sage Development Team (2023). http://www.sagemath.org

  51. Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., Wood, C.A.: A fast and simple partially oblivious PRF, with applications. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II, vol. 13276. LNCS, pp. 674–705. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07085-3_23

  52. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_10

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Christian Weinert for discussing MPC approaches with us; Ilaria Chillotti, Ben Curtis and Jean-Baptiste Orfila for answering questions about TFHE and tfhe-rs; Nicolas Gama for answering questions about TFHE. We thank Ward Beullens and Gregor Seiler for answering questions about LaBRADOR and sharing their size estimation Pari/GP script.

The research of Martin Albrecht was supported by UKRI grants EP/S02-0330/1, EP/-S02087X/1, EP/Y02432X/1 and by the European Union Horizon 2020 Research and Innovation Program Grant 780701. The research of Alex Davidson was supported by NOVA LINCS (UIDB/04516/2020), with the financial support of FCT.IP. Part of this work was done while Martin Albrecht was at Royal Holloway, University of London, while Alex Davidson was at Brave Software, and while Amit Deo was at Crypto Quantique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Albrecht .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 0 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albrecht, M.R., Davidson, A., Deo, A., Gardham, D. (2024). Crypto Dark Matter on the Torus. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14656. Springer, Cham. https://doi.org/10.1007/978-3-031-58751-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58751-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58750-4

  • Online ISBN: 978-3-031-58751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics