Abstract
This paper investigates the comparative performance of shortest reducts and shortest constructs in supervised classification tasks using real-life datasets from various domains, including both original datasets and noise-distorted variations. The study evaluates the effectiveness of the shortest reducts and shortest constructs, particularly in noisy environments. Experimental results provide insights into the relative performance of these attribute subsets and their impact on classification accuracy. The findings contribute to the understanding of the use of shortest reducts versus shortest constructs in supervised classification problems.
Supported by CONAHCYT through his doctoral scholarship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2019). http://archive.ics.uci.edu/ml
Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench. Morgan Kaufmann, Burlington (2016)
González-Díaz, Y., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés, M.S.: Algorithm for computing all the shortest reducts based on a new pruning strategy. Inf. Sci. 585, 113–126 (2022). https://doi.org/10.1016/j.ins.2021.11.037. https://www.sciencedirect.com/science/article/pii/S0020025521011592)
Jia, X., Shang, L., Zhou, B., Yao, Y.: Generalized attribute reduct in rough set theory. Knowl.-Based Syst. 91, 204–218 (2016). https://doi.org/10.1016/j.knosys.2015.05.017. https://www.sciencedirect.com/science/article/pii/S0950705115002038. Three-way Decisions and Granular Computing
Lazo-Cortés, M.S., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Sanchez-Diaz, G.: Computing constructs by using typical testor algorithms. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Sossa-Azuela, J.H., Olvera López, J.A., Famili, F. (eds.) MCPR 2015. LNCS, vol. 9116, pp. 44–53. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19264-2_5
Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)
Rodríguez-Diez, V., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés, M.S., Olvera-López, J.A.: A comparative study of two algorithms for computing the shortest Reducts: MiLIT and MinReduct. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds.) MCPR 2021. LNCS, vol. 12725, pp. 57–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77004-4_6
Susmaga, R.: Reducts versus constructs: an experimental evaluation. Electron. Notes Theor. Comput. Sci. 82(4), 239–250 (2003)
van Rijn, J.N., et al.: OpenML: a collaborative science platform. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 645–649. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_46
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gonzalez Diaz, Y., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés, M.S. (2024). Shortest Reducts Versus Shortest Constructs. In: Mezura-Montes, E., Acosta-Mesa, H.G., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2024. Lecture Notes in Computer Science, vol 14755. Springer, Cham. https://doi.org/10.1007/978-3-031-62836-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-62836-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62835-1
Online ISBN: 978-3-031-62836-8
eBook Packages: Computer ScienceComputer Science (R0)