Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Shortest Reducts Versus Shortest Constructs

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2024)

Abstract

This paper investigates the comparative performance of shortest reducts and shortest constructs in supervised classification tasks using real-life datasets from various domains, including both original datasets and noise-distorted variations. The study evaluates the effectiveness of the shortest reducts and shortest constructs, particularly in noisy environments. Experimental results provide insights into the relative performance of these attribute subsets and their impact on classification accuracy. The findings contribute to the understanding of the use of shortest reducts versus shortest constructs in supervised classification problems.

Supported by CONAHCYT through his doctoral scholarship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2019). http://archive.ics.uci.edu/ml

  2. Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  3. González-Díaz, Y., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés, M.S.: Algorithm for computing all the shortest reducts based on a new pruning strategy. Inf. Sci. 585, 113–126 (2022). https://doi.org/10.1016/j.ins.2021.11.037. https://www.sciencedirect.com/science/article/pii/S0020025521011592)

  4. Jia, X., Shang, L., Zhou, B., Yao, Y.: Generalized attribute reduct in rough set theory. Knowl.-Based Syst. 91, 204–218 (2016). https://doi.org/10.1016/j.knosys.2015.05.017. https://www.sciencedirect.com/science/article/pii/S0950705115002038. Three-way Decisions and Granular Computing

  5. Lazo-Cortés, M.S., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Sanchez-Diaz, G.: Computing constructs by using typical testor algorithms. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Sossa-Azuela, J.H., Olvera López, J.A., Famili, F. (eds.) MCPR 2015. LNCS, vol. 9116, pp. 44–53. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19264-2_5

    Chapter  Google Scholar 

  6. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  Google Scholar 

  7. Rodríguez-Diez, V., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés, M.S., Olvera-López, J.A.: A comparative study of two algorithms for computing the shortest Reducts: MiLIT and MinReduct. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds.) MCPR 2021. LNCS, vol. 12725, pp. 57–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77004-4_6

    Chapter  Google Scholar 

  8. Susmaga, R.: Reducts versus constructs: an experimental evaluation. Electron. Notes Theor. Comput. Sci. 82(4), 239–250 (2003)

    Article  Google Scholar 

  9. van Rijn, J.N., et al.: OpenML: a collaborative science platform. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 645–649. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_46

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanir Gonzalez Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonzalez Diaz, Y., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés, M.S. (2024). Shortest Reducts Versus Shortest Constructs. In: Mezura-Montes, E., Acosta-Mesa, H.G., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2024. Lecture Notes in Computer Science, vol 14755. Springer, Cham. https://doi.org/10.1007/978-3-031-62836-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62836-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62835-1

  • Online ISBN: 978-3-031-62836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics