Abstract
Interval-order partially ordered multisets with interfaces (ipomsets) have shown to be a versatile model for executions of concurrent systems in which both precedence and concurrency need to be taken into account.
In this paper, we develop a presentation of ipomsets as generated by a graph of certain discrete ipomsets (starters and terminators) under the relation which composes subsequent starters and subsequent terminators. Using this presentation, we show that also subsumptions are generated by elementary relations. We develop a similar correspondence on the automata side, relating higher-dimensional automata, which generate ipomsets, and ST-automata, which generate step sequences, and their respective languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amrane, A., Bazille, H., Clement, E., Fahrenberg, U.: Languages of higher-dimensional timed automata. In: PETRI NETS (2024). Accepted
Amrane, A., Bazille, H., Fahrenberg, U., Fortin, M.: Logic and languages of higher-dimensional automata. In: DLT (2024). Accepted
Amrane, H., Bazille, A., Fahrenberg, U., Ziemiański, K.: Closure and decision properties for higher-dimensional automata. In: Ábrahám, E., Dubslaff, C., Lizeth Tapia Tarifa, S., (eds.) ICTAC, vol. 14446, pp. 295–312. Springer (2023)
Bloom, S.L., Ésik, Z.: Free shuffle algebras in language varieties. Theoret. Comput. Sci. 163(1 &2), 55–98 (1996)
Bloom, S.L., Ésik, Z.: Varieties generated by languages with poset operations. Math. Struct. Comput. Sci. 7(6), 701–713 (1997)
Castañeda, A., Rajsbaum, S., Raynal, M.: Unifying concurrent objects and distributed tasks: Interval-linearizability. J. ACM 65(6), 45:1–45:42 (2018)
Fahrenberg, U.: Higher-dimensional timed automata. In: Abate, A., Girard, A., Heemels, M. (eds.) ADHS, vol. 51. IFAC-PapersOnLine, pp. 109–114. Elsevier (2018)
Fahrenberg, U.: Higher-dimensional timed and hybrid automata. Leibniz Trans. Embedded Syst. 8(2), 03:1–03:16 (2022)
Fahrenberg, U., Johansen, C., Struth, G., Bahadur Thapa, R.: Generating posets beyond N. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 82–99. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43520-2_6
Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Languages of higher-dimensional automata. Math. Struct. Comput. Sci. 31(5), 575–613 (2021)
Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: A Kleene theorem for higher-dimensional automata. In: Klin, B., Lasota, S., Muscholl, A. (eds.) CONCUR, vol. 243. LIPIcs, pp. 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Posets with interfaces as a model for concurrency. Inf. Comput. 285(2), 104914 (2022)
Fahrenberg, U., Ziemiański, K.: A Myhill-Nerode theorem for higher-dimensional automata. In: Gomes, L., Lorenz, R. (ed.) PETRI NETS. LNCS, vol. 13929, pp. 167–188. Springer, Cham (2023)
Fanchon, J., Morin, R.: Regular sets of pomsets with autoconcurrency. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 402–417. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5_27
Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7(1), 144–149 (1970)
Fishburn, P.C.: Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley (1985)
Gischer, J.L.: The equational theory of pomsets. Theoret. Comput. Sci. 61, 199–224 (1988)
Grabowski, J.: On partial languages. Fund. Inform. 4(2), 427 (1981)
Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its foundations. J. Logic Algebraic Methods Programm. 80(6), 266–296 (2011)
Hoare, T., van Staden, S., Möller, B., Struth, G., Zhu, H.: Developments in concurrent Kleene algebra. J. Logic Algebraic Methods Programm. 85(4), 617–636 (2016)
Janicki, R., Kleijn, J., Koutny, M., Mikulski, L.: Paradigms of Concurrency - Observations, Behaviours, and Systems - a Petri Net View, vol. 1020. Studies in Computational Intelligence. Springer (2022)
Janicki, R., Koutny, M.: Operational semantics, interval orders and sequences of antichains. Fund. Inform. 169(1–2), 31–55 (2019)
Janicki, R., Yin, X.: Modeling concurrency with interval traces. Inf. Comput. 253, 78–108 (2017)
Kappé, T., Brunet, P., Silva, A., Zanasi, F.: Concurrent kleene algebra: free model and completeness. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 856–882. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_30
Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)
Lamport, L.: On interprocess communication. Part I: basic formalism. Distributed Computing 1(2), 77–85 (1986)
Myers, A.: Basic interval orders. Order 16(3), 261–275 (1999)
Pratt, V.R.: Modeling concurrency with partial orders. J. Parallel Programm. 15(1), 33–71 (1986)
van Glabbeek, R.J.: On the expressiveness of higher dimensional automata. Theoretical Comput. Sci. 356(3), 265–290 (2006). See also [30]
van Glabbeek, R.J.: Erratum to “On the expressiveness of higher dimensional automata”. Theoretical Comput. Sci. 368(1-2), 168–194 (2006)
Wiener, N.: A contribution to the theory of relative position. Proc. Camb. Philos. Soc. 17, 441–449 (1914)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Amrane, A., Bazille, H., Clement, E., Fahrenberg, U., Ziemiański, K. (2024). Presenting Interval Pomsets with Interfaces. In: Fahrenberg, U., Fussner, W., Glück, R. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2024. Lecture Notes in Computer Science, vol 14787. Springer, Cham. https://doi.org/10.1007/978-3-031-68279-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-68279-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68278-0
Online ISBN: 978-3-031-68279-7
eBook Packages: Computer ScienceComputer Science (R0)