Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Presenting Interval Pomsets with Interfaces

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14787))

  • 112 Accesses

Abstract

Interval-order partially ordered multisets with interfaces (ipomsets) have shown to be a versatile model for executions of concurrent systems in which both precedence and concurrency need to be taken into account.

In this paper, we develop a presentation of ipomsets as generated by a graph of certain discrete ipomsets (starters and terminators) under the relation which composes subsequent starters and subsequent terminators. Using this presentation, we show that also subsumptions are generated by elementary relations. We develop a similar correspondence on the automata side, relating higher-dimensional automata, which generate ipomsets, and ST-automata, which generate step sequences, and their respective languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amrane, A., Bazille, H., Clement, E., Fahrenberg, U.: Languages of higher-dimensional timed automata. In: PETRI NETS (2024). Accepted

    Google Scholar 

  2. Amrane, A., Bazille, H., Fahrenberg, U., Fortin, M.: Logic and languages of higher-dimensional automata. In: DLT (2024). Accepted

    Google Scholar 

  3. Amrane, H., Bazille, A., Fahrenberg, U., Ziemiański, K.: Closure and decision properties for higher-dimensional automata. In: Ábrahám, E., Dubslaff, C., Lizeth Tapia Tarifa, S., (eds.) ICTAC, vol. 14446, pp. 295–312. Springer (2023)

    Google Scholar 

  4. Bloom, S.L., Ésik, Z.: Free shuffle algebras in language varieties. Theoret. Comput. Sci. 163(1 &2), 55–98 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bloom, S.L., Ésik, Z.: Varieties generated by languages with poset operations. Math. Struct. Comput. Sci. 7(6), 701–713 (1997)

    Article  MathSciNet  Google Scholar 

  6. Castañeda, A., Rajsbaum, S., Raynal, M.: Unifying concurrent objects and distributed tasks: Interval-linearizability. J. ACM 65(6), 45:1–45:42 (2018)

    Google Scholar 

  7. Fahrenberg, U.: Higher-dimensional timed automata. In: Abate, A., Girard, A., Heemels, M. (eds.) ADHS, vol. 51. IFAC-PapersOnLine, pp. 109–114. Elsevier (2018)

    Google Scholar 

  8. Fahrenberg, U.: Higher-dimensional timed and hybrid automata. Leibniz Trans. Embedded Syst. 8(2), 03:1–03:16 (2022)

    Google Scholar 

  9. Fahrenberg, U., Johansen, C., Struth, G., Bahadur Thapa, R.: Generating posets beyond N. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 82–99. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43520-2_6

    Chapter  Google Scholar 

  10. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Languages of higher-dimensional automata. Math. Struct. Comput. Sci. 31(5), 575–613 (2021)

    Article  MathSciNet  Google Scholar 

  11. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: A Kleene theorem for higher-dimensional automata. In: Klin, B., Lasota, S., Muscholl, A. (eds.) CONCUR, vol. 243. LIPIcs, pp. 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  12. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Posets with interfaces as a model for concurrency. Inf. Comput. 285(2), 104914 (2022)

    Article  MathSciNet  Google Scholar 

  13. Fahrenberg, U., Ziemiański, K.: A Myhill-Nerode theorem for higher-dimensional automata. In: Gomes, L., Lorenz, R. (ed.) PETRI NETS. LNCS, vol. 13929, pp. 167–188. Springer, Cham (2023)

    Google Scholar 

  14. Fanchon, J., Morin, R.: Regular sets of pomsets with autoconcurrency. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 402–417. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5_27

    Chapter  Google Scholar 

  15. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7(1), 144–149 (1970)

    Article  MathSciNet  Google Scholar 

  16. Fishburn, P.C.: Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley (1985)

    Google Scholar 

  17. Gischer, J.L.: The equational theory of pomsets. Theoret. Comput. Sci. 61, 199–224 (1988)

    Article  MathSciNet  Google Scholar 

  18. Grabowski, J.: On partial languages. Fund. Inform. 4(2), 427 (1981)

    MathSciNet  Google Scholar 

  19. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its foundations. J. Logic Algebraic Methods Programm. 80(6), 266–296 (2011)

    Article  MathSciNet  Google Scholar 

  20. Hoare, T., van Staden, S., Möller, B., Struth, G., Zhu, H.: Developments in concurrent Kleene algebra. J. Logic Algebraic Methods Programm. 85(4), 617–636 (2016)

    Article  MathSciNet  Google Scholar 

  21. Janicki, R., Kleijn, J., Koutny, M., Mikulski, L.: Paradigms of Concurrency - Observations, Behaviours, and Systems - a Petri Net View, vol. 1020. Studies in Computational Intelligence. Springer (2022)

    Google Scholar 

  22. Janicki, R., Koutny, M.: Operational semantics, interval orders and sequences of antichains. Fund. Inform. 169(1–2), 31–55 (2019)

    MathSciNet  Google Scholar 

  23. Janicki, R., Yin, X.: Modeling concurrency with interval traces. Inf. Comput. 253, 78–108 (2017)

    Article  MathSciNet  Google Scholar 

  24. Kappé, T., Brunet, P., Silva, A., Zanasi, F.: Concurrent kleene algebra: free model and completeness. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 856–882. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_30

    Chapter  Google Scholar 

  25. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)

    Article  Google Scholar 

  26. Lamport, L.: On interprocess communication. Part I: basic formalism. Distributed Computing 1(2), 77–85 (1986)

    MathSciNet  Google Scholar 

  27. Myers, A.: Basic interval orders. Order 16(3), 261–275 (1999)

    Article  MathSciNet  Google Scholar 

  28. Pratt, V.R.: Modeling concurrency with partial orders. J. Parallel Programm. 15(1), 33–71 (1986)

    Article  MathSciNet  Google Scholar 

  29. van Glabbeek, R.J.: On the expressiveness of higher dimensional automata. Theoretical Comput. Sci. 356(3), 265–290 (2006). See also [30]

    Google Scholar 

  30. van Glabbeek, R.J.: Erratum to “On the expressiveness of higher dimensional automata”. Theoretical Comput. Sci. 368(1-2), 168–194 (2006)

    Google Scholar 

  31. Wiener, N.: A contribution to the theory of relative position. Proc. Camb. Philos. Soc. 17, 441–449 (1914)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Bazille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amrane, A., Bazille, H., Clement, E., Fahrenberg, U., Ziemiański, K. (2024). Presenting Interval Pomsets with Interfaces. In: Fahrenberg, U., Fussner, W., Glück, R. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2024. Lecture Notes in Computer Science, vol 14787. Springer, Cham. https://doi.org/10.1007/978-3-031-68279-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68279-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68278-0

  • Online ISBN: 978-3-031-68279-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics