Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Graphical Model-Based Lasso for Weakly Dependent Time Series of Tensors

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14945))

  • 353 Accesses

Abstract

With the rise of multidimensional object learning, there has been increasing interest in tensor representations of data, which allows for the simultaneous modeling of information from multiple sources. In previous studies, the tensor representations of the data are largely restricted to treating the observed tensors as independent objects and have not explicitly accounted for potential temporal dependency among the tensors. This assumption substantially limits the applicability of tensor representations, since most multidimensional time-dependent processes, from crypto-assets to human brain signals, exhibit various types of serial dependency. Neglecting this dependence structure typically results in inflated false-positive rates, especially when the observed data samples are of moderate size, and also leads to underestimation of model uncertainty, which profoundly affects all aspects of risk analytics. To address this fundamental restriction, we propose a novel framework, named the WeDTLasso, for estimating the concentration matrix of a sequence of tensor-valued data, which allows us to explicitly and systematically account for the dependency between multiple information sources over time. We derive theoretical guarantees specifying the near-oracle error bound for WeDTLasso and assess its performance on simulated data, exhibiting various types of serial dependency. Furthermore, we illustrate utility of WeDTLasso in application to the portfolio construction for crypto-assets. We find that based on the Matthews Correlation Coefficient, WeDTLasso outperforms other state-of-the-art approaches with relative gains of up to 20%. Moreover, our findings suggest that our WeDTLasso estimator yields up to 50% increase in the Sharpe Ratio for portfolio selection performance, compared to state-of-the-art algorithms for portfolio analytics.

Dorcas Ofori-Boateng and Jaidev Goel are co-first authors with equal contribution and importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data, code, and system information has been provided for reproducibility in Appendix C of the Supplementary material.

References

  1. Araujo, M., Ribeiro, P., Song, H.A., Faloutsos, C.: Tensorcast: forecasting and mining with coupled tensors. Knowl. Inf. Syst. 59, 497–522 (2019)

    Article  Google Scholar 

  2. Bakry, W., Rashid, A., Al-Mohamad, S., El-Kanj, N.: Bitcoin and portfolio diversification: a portfolio optimization approach. J. Risk Financ. Manag. 14(7), 282 (2021). https://doi.org/10.3390/jrfm14070282

    Article  Google Scholar 

  3. Besag, J.: Efficiency of pseudolikelihood estimation for simple gaussian fields. Biometrika 616–618 (1977)

    Google Scholar 

  4. Bickel, P.J., Ritov, Y., Tsybakov, A.B.: Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 37(4), 1705–1732 (2009). http://www.jstor.org/stable/30243685

  5. Bühlmann, P., Van De Geer, S.: Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20192-9

    Book  Google Scholar 

  6. Chicco, D., Jurman, G.: The advantages of the Matthews Correlation Coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 1–13 (2020)

    Article  Google Scholar 

  7. Doukhan, P., Massart, P., Rio, E.: The functional central limit theorem for strongly mixing processes. Annales de l’I.H.P. Probabilités et statistiques 30(1), 63–82 (1994). http://eudml.org/doc/77475

  8. Doukhan, P., Neumann, M.H.: Probability and moment inequalities for sums of weakly dependent random variables, with applications. Stochast. Process. Appl. 117(7), 878–903 (2007)

    Article  MathSciNet  Google Scholar 

  9. Feng, Y., Li, Q., Chen, D., Rangaswami, R.: Solartrader: enabling distributed solar energy trading in residential virtual power plants. In: Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, pp. 60–69 (2020)

    Google Scholar 

  10. Gastwirth, J.L., Rubin, H.: Effect of dependence on the level of some one-sample tests. J. Am. Stat. Assoc. 66(336), 816–820 (1971)

    Article  MathSciNet  Google Scholar 

  11. Gel, Y.R., Miao, W., Gastwirth, J.L.: The effect of dependence between observations on the proper interpretation of statistical evidence. Law Probab. Risk 8(1), 25–38 (2009)

    Article  Google Scholar 

  12. Good, P.I., Hardin, J.W.: Common Errors in Statistics (and How to Avoid Them). Wiley, Hoboken (2012)

    Book  Google Scholar 

  13. Greenewald, K., Zhou, S., Hero, A., III.: Tensor graphical lasso (Teralasso). J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 81(5), 901–931 (2019)

    Article  MathSciNet  Google Scholar 

  14. Han, R., Willett, R., Zhang, A.R.: An optimal statistical and computational framework for generalized tensor estimation. Ann. Stat. 50(1), 1–29 (2022)

    Article  MathSciNet  Google Scholar 

  15. Hodoshima, J., Otsuki, N.: Evaluation by the Aumann and Serrano performance index and sharpe ratio: bitcoin performance. Appl. Econ. 51, 4282–4298 (2019). https://doi.org/10.1080/00036846.2019.1591601

    Article  Google Scholar 

  16. Data source. https://www.cryptodatadownload.com/

  17. Kalayci, C.B., Ertenlice, O., Akbay, M.A.: A comprehensive review of deterministic models and applications for mean-variance portfolio optimization. Expert Syst. Appl. 125, 345–368 (2019)

    Article  Google Scholar 

  18. Khare, K., Oh, S.Y., Rajaratnam, B.: A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 803–825 (2015)

    Google Scholar 

  19. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  20. Korkusuz, B., Kambouroudis, D., McMillan, D.G.: Do extreme range estimators improve realized volatility forecasts? Evidence from G7 stock markets. Finan. Res. Lett. 103992 (2023)

    Google Scholar 

  21. Madasu, P., Teja, P.S.: Return-based vs. range-based volatility estimations–an overview. Int. J. Anal. Exp. Modal Anal. 11 (2019)

    Google Scholar 

  22. Markowitz, H.: Portfolio selection. J. Finan. 7, 77–91 (1952)

    Google Scholar 

  23. Mazanec, J.: Portfolio optimalization on digital currency market. J. Risk Financ. Manag. 14(4), 160 (2021). https://doi.org/10.3390/jrfm14040160

  24. Olesen, J.L., Ianus, A., Østergaard, L., Shemesh, N., Jespersen, S.N.: Tensor denoising of multidimensional MRI data. Magn. Reson. Med. 89(3), 1160–1172 (2023)

    Article  Google Scholar 

  25. Petropoulos, F., et al.: Forecasting: theory and practice. Int. J. Forecast. 38(3), 705–871 (2022)

    Article  Google Scholar 

  26. Poythress, J., Ahn, J., Park, C.: Low-rank, orthogonally decomposable tensor regression with application to visual stimulus decoding of fMRI data. J. Comput. Graph. Stat. 31(1), 190–203 (2022)

    Article  MathSciNet  Google Scholar 

  27. Rubinstein, M.: Markowitz’s portfolio selection: a fifty-year retrospective. J. Financ. 57(3), 1041–1045 (2002)

    Article  Google Scholar 

  28. Shah, D., Yu, C.L.: Iterative collaborative filtering for sparse noisy tensor estimation. In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 41–45. IEEE (2019)

    Google Scholar 

  29. Trautman, L.J., Foster, L.D., II.: The FTX crypto debacle: largest fraud since madoff? Univ. Memphis Law Rev. 54, 289 (2022). https://doi.org/10.2139/ssrn.4290093

  30. Tsiligkaridis, T., Hero, A.O., III., Zhou, S.: On convergence of kronecker graphical lasso algorithms. IEEE Trans. Signal Process. 61(7), 1743–1755 (2013). https://doi.org/10.1109/tsp.2013.2240157

    Article  MathSciNet  Google Scholar 

  31. Wang, Y., Jang, B., Hero, A.: The sylvester graphical lasso (syglasso). In: International Conference on Artificial Intelligence and Statistics, pp. 1943–1953. PMLR (2020)

    Google Scholar 

  32. Zhu, Y., Cribben, I.: Sparse graphical models for functional connectivity networks: best methods and the autocorrelation issue. Brain Connect. 8(3), 139–165 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by grants NASA AIST grant 21-AIST21 2-0059 and ONR grant N00014-21-1-2530. Also, the paper is based upon work supported by (while Y.R.G. was serving at) the NSF. The views expressed in the article do not necessarily represent the views of NASA, NSF or ONR. The work of I. C. was supported by the Natural Sciences and Engineering Research Council (Canada) grant RGPIN-2024-06102 and the Xerox Faculty Fellowship, Alberta School of Business. The work of D.O.B was supported by the 0012AA FEA Faculty Enhancement Awards at Portland State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorcas Ofori-Boateng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 430 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ofori-Boateng, D., Goel, J., Cribben, I., Gel, Y.R. (2024). Graphical Model-Based Lasso for Weakly Dependent Time Series of Tensors. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14945. Springer, Cham. https://doi.org/10.1007/978-3-031-70362-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70362-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70361-4

  • Online ISBN: 978-3-031-70362-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics