Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SocialCOP: Reusable Building Blocks for Collective Constraint Optimization

  • Conference paper
  • First Online:
KI 2024: Advances in Artificial Intelligence (KI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14992 ))

Included in the following conference series:

  • 340 Accesses

Abstract

Distributing limited resources among a group of agents is a fundamental challenge in both algorithmic decision support systems and everyday life. The goal of achieving a socially desirable allocation of these resources instead of mere economic efficiency is relevant to many types of allocation problems under hard constraints. At the same time, modeling languages and high-level libraries for combinatorial optimization problems are becoming more widespread. Although fairness is an important key factor in optimization processes, there is currently no way to use fairness constraints and objectives – unless they are written from scratch. Thus, combining and experimenting with different fairness criteria is tedious as no predefined set of constraints and objectives is available in modeling languages. We propose SocialCOP, a toolbox of reusable constraint modeling building blocks of concepts derived from social choice theory, fair division, and algorithmic fairness (namely, Envy-freeness, Leximin, Rawlsianism, Utilitarianism, Pareto). Our toolbox provides a convenient and reusable solution for adding fairness constraints to existing collective constraint optimization problems formulated in MiniZinc. Our created building blocks can be combined or added individually to the existing satisfaction problem. Experimental results show that a much richer combination of fairness objectives can be modeled, leading to the discovery of solutions that are optimal in more than one way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Full details can be found online at https://github.com/AImotion-Bavaria/SocialCOP.

  2. 2.

    We only considered table assignment here since it is a division problem.

References

  1. Bhavnani, S., Schiendorfer, A.: Towards Copeland optimization in combinatorial problems. In: Schaus, P. (ed.) CPAIOR 2022. LNCS, vol. 13292, pp. 34–43. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08011-1_4

    Chapter  Google Scholar 

  2. Bouveret, S., Lemaıtre, M.: Finding leximin-optimal solutions using constraint programming: new algorithms and their application to combinatorial auctions. In: Computational Social Choice (COMSOC-2006), p. 49 (2006)

    Google Scholar 

  3. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D.: Handbook of Computational Social Choice. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  4. Bynum, M.L., et al.: Pyomo-Optimization Modeling in Python, vol. 67, 3rd edn. Springer, Cham (2021)

    Book  Google Scholar 

  5. Cornelio, C., Pini, M.S., Rossi, F., Venable, K.B.: Multi-agent soft constraint aggregation via sequential voting: theoretical and experimental results. Auton. Agent. Multi-Agent Syst. 33(1–2), 159–191 (2019)

    Article  Google Scholar 

  6. Dalla Pozza, G., Rossi, F., Venable, K.B.: Multi-agent soft constraint aggregation: a sequential approach. In: Proceedings of the 3rd International Conference on Agents and Artificial Intelligence, ICAART 2011, vol. 11 (2010)

    Google Scholar 

  7. Ek, A.J.P.: High-level modelling and solving for online, real-time, and multiagent combinatorial optimisation. Ph.D. thesis, Monash University (2022)

    Google Scholar 

  8. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to summarize benchmark results. Commun. ACM 29(3), 218–221 (1986)

    Article  Google Scholar 

  9. Fourer, R., Gay, D., Kernighan, B.: AMPL: A Mathematical Programing Language, sw wallace, ed (1989)

    Google Scholar 

  10. Guns, T.: Increasing modeling language convenience with a universal n-dimensional array, cppy as python-embedded example. In: Proceedings of the 18th workshop on Constraint Modelling and Reformulation at CP (Modref 2019), vol. 19 (2019)

    Google Scholar 

  11. Guns, T., Stuckey, P.J., Tack, G.: Solution dominance over constraint satisfaction problems. arXiv preprint arXiv:1812.09207 (2018)

  12. John Hooker: Optimization models for fairness (2014). https://johnhooker.tepper.cmu.edu/fairnessFITmonash.pdf

  13. Matt, P.-A., Toni, F.: Egalitarian allocations of indivisible resources: theory and computation. In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149, pp. 243–257. Springer, Heidelberg (2006). https://doi.org/10.1007/11839354_18

    Chapter  Google Scholar 

  14. Moulin, H.: Fair Division and Collective Welfare. MIT Press, Cambridge (2004)

    Google Scholar 

  15. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  16. Plaut, B., Roughgarden, T.: Almost envy-freeness with general valuations. http://arxiv.org/pdf/1707.04769v3

  17. Rendl, A., Guns, T., Stuckey, P.J., Tack, G.: MiniSearch: a solver-independent meta-search language for MiniZinc. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 376–392. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_27

    Chapter  Google Scholar 

  18. Rossi, F.: Collective decision making: a great opportunity for constraint reasoning. Constraints 19(2), 186–194 (2014)

    Article  Google Scholar 

  19. Rossi, F., Venable, K.B., Walsh, T.: Preferences in constraint satisfaction and optimization. AI Mag. 29(4), 58–68 (2008)

    Google Scholar 

  20. Savulescu, J., Persson, I., Wilkinson, D.: Utilitarianism and the pandemic. Bioethics 34(6), 620–632 (2020). https://doi.org/10.1111/bioe.12771

    Article  Google Scholar 

  21. Schiendorfer, A., Knapp, A., Anders, G., Reif, W.: MiniBrass: soft constraints for MiniZinc. Constraints 23, 403–450 (2018)

    Article  MathSciNet  Google Scholar 

  22. Schiendorfer, A., Reif, W.: Reducing bias in preference aggregation for multiagent soft constraint problems. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 510–526. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_30

    Chapter  Google Scholar 

  23. Stuckey, P.J., Tack, G.: MiniZinc with functions. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 268–283. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_18

    Chapter  Google Scholar 

  24. Stuckey, P.J., Tack, G., de la Banda, M.G.: Twelve years of MiniZinc

    Google Scholar 

  25. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, 2nd rev (1947)

    Google Scholar 

  26. Xinying Chen, V., Hooker, J.N.: A guide to formulating fairness in an optimization model. Ann. Oper. Res. 326(1), 1–39 (2023). https://doi.org/10.1007/s10479-023-05264-y

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schiendorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruttmann, J., Schiendorfer, A. (2024). SocialCOP: Reusable Building Blocks for Collective Constraint Optimization. In: Hotho, A., Rudolph, S. (eds) KI 2024: Advances in Artificial Intelligence. KI 2024. Lecture Notes in Computer Science(), vol 14992 . Springer, Cham. https://doi.org/10.1007/978-3-031-70893-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70893-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70892-3

  • Online ISBN: 978-3-031-70893-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics