Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SAT-Based Automated Completion for Reachability Analysis

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15015))

Included in the following conference series:

  • 195 Accesses

Abstract

Reachability analysis in rewriting has served as a verification technique in recent decades, despite the underlying issue being undecidable. Regular tree model-checking has found application in verifying security protocols, Java programs, and concurrent systems. The premise in these approaches is to represent the targeted system as a state system and encode its transitions using a term rewriting system or a tree transducer. The crucial aspect lies in calculating a fixed point that represents the set of configurations or states that can be reached. While this is generally uncomputable, it is sufficient to compute an overapproximation for the purpose of verifying safety properties.

Let A, B, and \(\mathcal {R}\) represent, respectively, an initial set of terms, a set of forbidden (“bad”) terms, and a term rewriting system. The question is whether there exists a regular approximation \(A^\star \) of the set of reachable terms such that \(A^\star \supseteq \mathcal {R}^*(A)\) and \(A^\star \cap B = \varnothing \).

Finding suitable approximations requires, in practice, the use of heuristics, steered towards an anticipated conclusive fixed point by the intervention of human domain experts. The parameters upon which they act may take the form of term equations, normalizing rules, predicate abstractions, etc., but in all cases boil down to carefully choosing states to merge during the fixpoint computation, forcing convergence while avoiding overshooting the approximation into \(B\).

We propose a practical, scalable automated method offloading that expert work to a SAT solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is usually presented as the pair \((\sigma \,l, \sigma \,r)\), hence the name “critical pair”.

  2. 2.

    This the usual restriction for TA completion. See [14, Sec. 4.4.1] for a discussion.

  3. 3.

    Intuitively, a completion step enables \(A\) to recognise all terms obtainable by applying any number of rules of \(\mathcal {R}\) in parallel—and exactly those terms if \(\mathcal {R}\) is right-linear—hence the notation.

  4. 4.

    https://github.com/vincent-hugot/CIAA-2024-SAT-Completion.

References

  1. Boichut, Y., Courbis, R., Héam, P.-C., Kouchnarenko, O.: Finer is better: abstraction refinement for rewriting approximations. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 48–62. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70590-1_4

    Chapter  Google Scholar 

  2. Boichut, Y., Dao, T.-B.-H., Murat, V.: Characterizing conclusive approximations by logical formulae. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, pp. 72–84. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24288-5_8

    Chapter  Google Scholar 

  3. Boichut, Y., Héam, P.-C.: A theoretical limit for safety verification techniques with regular fix-point computations. IPL 108(1), 1–2 (2008)

    Article  MathSciNet  Google Scholar 

  4. Boichut, Y., Héam, P.-C., Kouchnarenko, O.: Approximation-based tree regular model-checking. Nord. J. Comput. 14(3), 216–241 (2008)

    MathSciNet  Google Scholar 

  5. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree) model checking. STTT 14(2), 167–191 (2012)

    Article  Google Scholar 

  6. Comon, H., Dauchet, M., Gilleron, R., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (TATA) (2007)

    Google Scholar 

  7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  8. Feuillade, G., Genet, T., Tong, V.V.T.: Reachability analysis over term rewriting systems. J. Autom. Reason. 33(3–4), 341–383 (2004)

    Article  MathSciNet  Google Scholar 

  9. Genet, T., Rusu, V.: Equational Tree Automata Completion. J. Symb. Comput. 45, 2010 (2010)

    Article  MathSciNet  Google Scholar 

  10. Genet, T.: Decidable approximations of sets of descendants and sets of normal forms. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 151–165. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0052368

    Chapter  Google Scholar 

  11. Genet, Th.: Completeness of tree automata completion. In: FSCD 2018. LIPIcs, vol. 108, pp. 16:1–16:20 (2018)

    Google Scholar 

  12. Genet, T., Haudebourg, T., Jensen, T.: Verifying higher-order functions with tree automata. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 565–582. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_31

    Chapter  Google Scholar 

  13. Genet, T., Klay, F.: Rewriting for cryptographic protocol verification. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 271–290. Springer, Heidelberg (2000). https://doi.org/10.1007/10721959_21

    Chapter  Google Scholar 

  14. Genet, T.: Reachability analysis of rewriting for software verification. Habilitation thesis (habilitation à diriger des recherches), University of Rennes I (2009)

    Google Scholar 

  15. Genet, T., Tong, V.V.T.: Reachability analysis of term rewriting systems with timbuk. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 695–706. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45653-8_48

    Chapter  Google Scholar 

  16. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34188-5_8

    Chapter  Google Scholar 

  17. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a Python toolkit for prototyping with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_26

    Chapter  Google Scholar 

  18. Resten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 424–435. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_41

    Chapter  Google Scholar 

  19. Klarlund, N., Møller, A.: MONA Version 1.4 User Manual, January 2001. Notes Series NS-01-1. http://www.brics.dk/mona/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohan Boichut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boichut, Y., Hugot, V., Boiret, A. (2024). SAT-Based Automated Completion for Reachability Analysis. In: Fazekas, S.Z. (eds) Implementation and Application of Automata. CIAA 2024. Lecture Notes in Computer Science, vol 15015. Springer, Cham. https://doi.org/10.1007/978-3-031-71112-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71112-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71111-4

  • Online ISBN: 978-3-031-71112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics