Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rewriting Induction for Higher-Order Constrained Term Rewriting Systems

  • Conference paper
  • First Online:
Logic-Based Program Synthesis and Transformation (LOPSTR 2024)

Abstract

Logically Constrained Term Rewriting Systems (LCTRSs) provide a framework very suitable for modeling both imperative and functional languages. One may convert programs in traditional languages into LCTRSs, and then use methods from term rewriting to analyze properties such as termination or program equivalence.

In particular in functional programming, higher-order constructs arise naturally. These have been studied using higher-order term rewriting. The recent definition of LCSTRSs combines higher-order rewriting with logical constraints, which creates the framework to closely model functional programs, but very few methods for their analysis have thus far been defined. Here, we study program equivalence for LCSTRSs, combining the definition of rewriting induction for first-order constrained rewriting with insights from unconstrained higher-order equivalence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Relational verification through horn clause transformation. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 147–169. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7_8

    Chapter  Google Scholar 

  2. Aoto, T., Nishida, N., Schöpf, J.: Equational theories and validity for logically constrained term rewriting. In: Proceedings of the FSCD 2024. LIPIcs, vol. 299, pp. 31:1–31:21 (2024). https://doi.org/10.4230/LIPICS.FSCD.2024.31

  3. Aoto, T., Yamada, T., Chiba, Y.: Natural inductive theorems for higher-order rewriting. In: Proceedings of the RTA 2011. LIPIcs, vol. 10, pp. 107–121 (2011). https://doi.org/10.4230/LIPIcs.RTA.2011.107

  4. Aoto, T., Yamada, T., Toyama, Y.: Inductive theorems for higher-order rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 269–284. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25979-4_19

    Chapter  Google Scholar 

  5. Chiba, Y., Aoto, T., Toyama, Y.: Program transformation templates for tupling based on term rewriting. IEICE Trans. Inf. Syst. E93-D(5), 963–973 (2010). https://doi.org/10.1587/transinf.E93.D.963

  6. Delmas, D., Miné, A.: Analysis of software patches using numerical abstract interpretation. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 225–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_12

    Chapter  Google Scholar 

  7. Falke, S., Kapur, D.: Rewriting induction + linear arithmetic = decision procedure. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 241–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_20

    Chapter  Google Scholar 

  8. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression verification. In: Proceedings of the ASE 2014, pp. 349–360. ACM (2014). https://doi.org/10.1145/2642937.2642987

  9. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained rewriting induction. ACM Trans. Comput. Logic (TOCL) 18(2), 14:1–14:50 (2017). https://doi.org/10.1145/3060143

  10. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive procedures. Acta Informatica 45(6), 403–439 (2008). https://doi.org/10.1007/s00236-008-0075-2

    Article  MathSciNet  Google Scholar 

  11. Guo, L., Hagens, K., Kop, C., Vale, D.: Higher-order constrained dependency pairs for (universal) computability. In: Proceedings of the MFCS 2024 (2024, to Appear). https://doi.org/10.48550/arXiv.2406.19379

  12. Guo, L., Kop, C.: Higher-order LCTRSs and their termination. In: Weirich, S. (ed.) ESOP 2024. LNCS, vol. 14577, pp. 331–357. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57267-8_13

  13. Hagens, K., Kop, C.: Rewriting induction for higher-order constrained term rewriting systems (2024). https://www.cs.ru.nl/~cynthiakop/lopstr24.pdf; pre-editing copy of this paper including appendix

  14. Huth, M., Ryan, M.D.: Modelling and Reasoning About Systems. Cambridge University Press (2004). https://doi.org/10.1017/CBO9780511810275

  15. Koike, H., Toyama, Y.: Inductionless induction and rewriting induction. Comput. Softw. 17(6), 509–520 (2000). https://doi.org/10.11309/jssst.17.509. (in Japanese)

  16. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 343–358. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_24

  17. Kop, C., Nishida, N.: Constrained term rewriting tooL. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 549–557. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_38

  18. Kop, C., Raamsdonk, F.v.: Dynamic dependency pairs for algebraic functional systems. LMCS 8(2), 1–51 (2012). https://doi.org/10.2168/LMCS-8(2:10)2012

  19. Kusakari, K.: On proving termination of term rewriting systems with higher-order variables. IPSJ Trans. Program. 42(7), 35–45 (2001). http://id.nii.ac.jp/1001/00016864/

  20. Nakabayashi, N., Nishida, N., Kusakari, K., Sakabe, T., Sakai, M.: Lemma generation method in rewriting induction for constrained term rewriting systems. Comput. Softw. 28(1), 173–189 (2010). https://www.trs.css.i.nagoya-u.ac.jp/crisys/nakabayashi10.pdf

  21. Nishida, N., Kojima, M., Kato, T.: On transforming imperative programs into logically constrained term rewrite systems via injective functions from configurations to terms. In: Proceedings of the WPTE 2022 (2022). https://wvvw.easychair.org/publications/preprint_download/DbM2

  22. Partush, N., Yahav, E.: Abstract semantic differencing via speculative correlation. In: Proceedings of the OOPSLA 2014, pp. 811–828. ACM (2014). https://doi.org/10.1145/2660193.2660245

  23. Reddy, U.S.: Term rewriting induction. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 162–177. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52885-7_86

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper Hagens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hagens, K., Kop, C. (2024). Rewriting Induction for Higher-Order Constrained Term Rewriting Systems. In: Bowles, J., Søndergaard, H. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 2024. Lecture Notes in Computer Science, vol 14919. Springer, Cham. https://doi.org/10.1007/978-3-031-71294-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71294-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71293-7

  • Online ISBN: 978-3-031-71294-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics