Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rethinking Data Augmentation for Robust LiDAR Semantic Segmentation in Adverse Weather

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15074))

Included in the following conference series:

Abstract

Existing LiDAR semantic segmentation methods often struggle with performance declines in adverse weather conditions. Previous work has addressed this issue by simulating adverse weather or employing universal data augmentation during training. However, these methods lack a detailed analysis and understanding of how adverse weather negatively affects LiDAR semantic segmentation performance. Motivated by this issue, we identified key factors of adverse weather and conducted a toy experiment to pinpoint the main causes of performance degradation: (1) Geometric perturbation due to refraction caused by fog or droplets in the air and (2) Point drop due to energy absorption and occlusions. Based on these findings, we propose new strategic data augmentation techniques. First, we introduced a Selective Jittering (SJ) that jitters points in the random range of depth (or angle) to mimic geometric perturbation. Additionally, we developed a Learnable Point Drop (LPD) to learn vulnerable erase patterns with a Deep Q-Learning Network to approximate the point drop phenomenon from adverse weather conditions. Without precise weather simulation, these techniques strengthen the LiDAR semantic segmentation model by exposing it to vulnerable conditions identified by our data-centric analysis. Experimental results confirmed the suitability of the proposed data augmentation methods for enhancing robustness against adverse weather conditions. Our method achieves a notable 39.5 mIoU on the SemanticKITTI-to-SemanticSTF benchmark, improving the baseline by 8.1%p and establishing a new state-of-the-art. Our code will be released at https://github.com/engineerJPark/LiDARWeather.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ando, A., Gidaris, S., Bursuc, A., Puy, G., Boulch, A., Marlet, R.: RangeViT: towards vision transformers for 3D semantic segmentation in autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5240–5250 (2023)

    Google Scholar 

  2. Behley, J., et al.: SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)

    Google Scholar 

  3. Bijelic, M., Gruber, T., Ritter, W.: A benchmark for lidar sensors in fog: is detection breaking down? In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 760–767. IEEE (2018)

    Google Scholar 

  4. Choe, J., Park, C., Rameau, F., Park, J., Kweon, I.S.: PointMixer: MLP-mixer for point cloud understanding. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022, pp. 620–640. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_36

  5. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

    Google Scholar 

  6. Fersch, T., Buhmann, A., Koelpin, A., Weigel, R.: The influence of rain on small aperture LiDAR sensors. In: 2016 German Microwave Conference (GeMiC), pp. 84–87. IEEE (2016)

    Google Scholar 

  7. Hahner, M., et al.: LiDAR snowfall simulation for robust 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16364–16374 (2022)

    Google Scholar 

  8. Hahner, M., Sakaridis, C., Dai, D., Van Gool, L.: Fog simulation on real LiDAR point clouds for 3D object detection in adverse weather. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15283–15292 (2021)

    Google Scholar 

  9. Kilic, V., Hegde, D., Sindagi, V., Cooper, A.B., Foster, M.A., Patel, V.M.: LiDAR light scattering augmentation (LISA): physics-based simulation of adverse weather conditions for 3D object detection. arXiv preprint arXiv:2107.07004 (2021)

  10. Kong, L., et al.: Rethinking range view representation for LiDAR segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 228–240 (2023)

    Google Scholar 

  11. Kong, L., et al.: Robo3D: towards robust and reliable 3D perception against corruptions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19994–20006 (2023)

    Google Scholar 

  12. Kong, L., Ren, J., Pan, L., Liu, Z.: LaserMix for semi-supervised LiDAR semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21705–21715 (2023)

    Google Scholar 

  13. Lai, X., Chen, Y., Lu, F., Liu, J., Jia, J.: Spherical transformer for LiDAR-based 3D recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17545–17555 (2023)

    Google Scholar 

  14. Lee, S., Son, T., Kwak, S.: FIFO: learning fog-invariant features for foggy scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18911–18921 (2022)

    Google Scholar 

  15. Li, Y., Duthon, P., Colomb, M., Ibanez-Guzman, J.: What happens for a ToF LiDAR in fog? IEEE Trans. Intell. Transp. Syst. 22(11), 6670–6681 (2020)

    Article  Google Scholar 

  16. Li, Z., Wu, X., Wang, J., Guo, Y.: Weather-degraded image semantic segmentation with multi-task knowledge distillation. Image Vis. Comput. 127, 104554 (2022)

    Article  Google Scholar 

  17. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: fast and accurate LiDAR semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)

    Google Scholar 

  18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Google Scholar 

  19. Nekrasov, A., Schult, J., Litany, O., Leibe, B., Engelmann, F.: Mix3D: out-of-context data augmentation for 3D scenes. In: 2021 International Conference on 3D Vision (3DV), pp. 116–125. IEEE (2021)

    Google Scholar 

  20. Puy, G., Boulch, A., Marlet, R.: Using a waffle iron for automotive point cloud semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3379–3389 (2023)

    Google Scholar 

  21. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  22. Qian, K., Zhu, S., Zhang, X., Li, L.E.: Robust multimodal vehicle detection in foggy weather using complementary LiDAR and radar signals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 444–453 (2021)

    Google Scholar 

  23. Ryu, K., Hwang, S., Park, J.: Instant domain augmentation for LiDAR semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9350–9360 (2023)

    Google Scholar 

  24. Saltori, C., Galasso, F., Fiameni, G., Sebe, N., Ricci, E., Poiesi, F.: CosMix: compositional semantic mix for domain adaptation in 3D LiDAR segmentation. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, pp. 586–602. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_34

  25. Shin, J., Park, H., Kim, T.: Characteristics of laser backscattering intensity to detect frozen and wet surfaces on roads. J. Sens. 2019(1), 8973248 (2019)

    Google Scholar 

  26. Smith, B.E., Gardner, A., Schneider, A., Flanner, M.: Modeling biases in laser-altimetry measurements caused by scattering of green light in snow. Remote Sens. Environ. 215, 398–410 (2018)

    Article  Google Scholar 

  27. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)

    Google Scholar 

  28. Tolstikhin, I.O., et al.: MLP-Mixer: an all-MLP architecture for vision. Adv. Neural. Inf. Process. Syst. 34, 24261–24272 (2021)

    Google Scholar 

  29. Xiao, A., Huang, J., Guan, D., Cui, K., Lu, S., Shao, L.: PolarMix: a general data augmentation technique for lidar point clouds. Adv. Neural. Inf. Process. Syst. 35, 11035–11048 (2022)

    Google Scholar 

  30. Xiao, A., Huang, J., Guan, D., Zhan, F., Lu, S.: Transfer learning from synthetic to real LiDAR point cloud for semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2795–2803 (2022)

    Google Scholar 

  31. Xiao, A., et al.: 3D semantic segmentation in the wild: Learning generalized models for adverse-condition point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9382–9392 (2023)

    Google Scholar 

  32. Yan, X., Zheng, C., Xue, Y., Li, Z., Cui, S., Dai, D.: Benchmarking the robustness of LiDAR semantic segmentation models. Int. J. Comput. Vision, 1–24 (2024)

    Google Scholar 

  33. Yang, D., et al.: Realistic rainy weather simulation for LiDARS in Carla simulator. arXiv preprint arXiv:2312.12772 (2023)

  34. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  35. Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9939–9948 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by IITP grant funded by MSIT (No. 2021-0-02068, Artificial Intelligence Innovation Hub and RS-2019-II190075, Artificial Intelligence Graduate School Program (KAIST)) and KEIT grant funded by MOTIE (No. 2022-0-00680, No. 2022-0-01045), NRF funded by the MSIP (NRF-2022R1A2C3011154, RS-2023-00219019, RS-2023-00240135) and Samsung Electronics Co., Ltd (IO230508-06190-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjung Shim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5223 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, J., Kim, K., Shim, H. (2025). Rethinking Data Augmentation for Robust LiDAR Semantic Segmentation in Adverse Weather. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15074. Springer, Cham. https://doi.org/10.1007/978-3-031-72640-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72640-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72639-2

  • Online ISBN: 978-3-031-72640-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics