Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A New Formulation and Solution of the Minimum Energy Control Problem of Positive 2D Continuous-Discrete Linear Systems

  • Conference paper
Recent Advances in Automation, Robotics and Measuring Techniques

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 267))

Abstract

A new formulation of the minimum energy control problem for the positive 2D continuous-discrete linear systems is proposed. Necessary and sufficient conditions for the reachability of the systems are established. Conditions for the existence of the solution to the minimum energy control problem and procedures for computation of an input minimizing the given performance index are given. Effectiveness of the procedure is demonstrated on numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bistritz, Y.: A stability test for continuous-discrete bivariate polynomials. In: Proc. Int. Symp. on Circuits and Systems, vol. 3, pp. 682–685 (2003)

    Google Scholar 

  2. Busłowicz, M.: Stability and robust stability conditions for a general model of scalar continuous-discrete linear systems. Measurement Automation and Monitoring 56(2), 133–135 (2010)

    Google Scholar 

  3. Busłowicz, M.: Robust stability of the new general 2D model of a class of continuous-discrete linear systems. Bull. Pol. Acad. Sci. Techn. 57(4) (2010)

    Google Scholar 

  4. Dymkov, M., Gaishun, I., Rogers, E., Gałkowski, K., Owens, D.H.: Control theory for a class of 2D continuous-discrete linear systems. Int. J. Control 77(9), 847–860 (2004)

    Article  MATH  Google Scholar 

  5. Farina, L., Rinaldi, S.: Positive Linear Systems; Theory and Applications. J. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  6. Gałkowski, K., Rogers, E., Paszke, W., Owens, D.H.: Linear repetitive process control theory applied to a physical example. Int. J. Appl. Math. Comput. Sci. 13(1), 87–99 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Kaczorek, T.: Minimum energy control of fractional positive continuous-time linear systems. In: Proc. of Conf. MMAR Międzyzdroje, Poland, August 26-29 (2013)

    Google Scholar 

  8. Kaczorek, T.: Minimum energy control of descriptor positive discrete-time linear systems. Compel 3(4) (2013) (in press)

    Google Scholar 

  9. Kaczorek, T.: New stability tests of positive standard and fractional linear systems. Circuit and Systems 2(4), 261–268 (2011)

    Article  MathSciNet  Google Scholar 

  10. Kaczorek, T.: Positive 1D and 2D systems. Springer, London (2001)

    Google Scholar 

  11. Kaczorek, T.: Positive 2D hybrid linear systems. Bull. Pol. Acad. Sci. Tech. 55(4), 351–358 (2007)

    Google Scholar 

  12. Kaczorek, T.: Positive fractional 2D continuous-discrete linear systems. Bull. Pol. Acad. Tech. 59(4), 575–579 (2011)

    MATH  MathSciNet  Google Scholar 

  13. Kaczorek, T.: Positive fractional 2D hybrid linear systems. Bull. Pol. Acad. Tech. 56(3), 273–277 (2008)

    Google Scholar 

  14. Kaczorek, T.: Reachability and minimum energy control of positive 2D continuous-discrete systems. Bull. Pol. Acad. Sci. Tech. 46(1), 85–93 (1998)

    MATH  Google Scholar 

  15. Kaczorek, T.: Realization problem for positive 2D hybrid systems. Compel 27(3), 613–623 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kaczorek, T.: Selected Problems of Fractional Systems Theory. LNCIS, vol. 411. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  17. Kaczorek, T.: Stability of continuous-discrete linear systems described by general model. Bull. Pol. Acad. Sci. Tech. 59(2), 189–193 (2011)

    MATH  Google Scholar 

  18. Kaczorek, T.: Minimum energy control of positive continuous-time linear systems with bounded inputs. Int. J. Appl. Math. Comput. Sci. (2013) (in press)

    Google Scholar 

  19. Kaczorek, T.: Necessary and sufficient conditions for the minimum energy control of positive discrete-time linear systems with bounded inputs. Bull. Pol. Acad. Sci. Tech. (2013) (in press)

    Google Scholar 

  20. Kaczorek, T., Klamka, J.: Minimum energy control of 2D linear systems with variable coefficients. Int. J. of Control 44(3), 645–650 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Klamka, J.: Controllability and minimum energy control problem of fractional discrete-time systems. In: Baleanu, D., Guvenc, Z.B., Tenreiro Machado, J.A. (eds.) New Trends in Nanotechnology and Fractional Calculus, pp. 503–509. Springer, New York (2010)

    Chapter  Google Scholar 

  22. Klamka, J.: Controllability of Dynamical Systems. Kluwer Academic Press, Dordrecht (1991)

    MATH  Google Scholar 

  23. Klamka, J.: Minimum energy control of 2D systems in Hilbert spaces. System Sciences 9(1-2), 33–42 (1983)

    MathSciNet  Google Scholar 

  24. Klamka, J.: Relative controllability and minimum energy control of linear systems with distributed delays in control. IEEE Trans. Autom. Contr. 21(4), 594–595 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kaczorek, T., Marchenko, V., Sajewski, Ł.: Solvability of 2D hybrid linear systems - comparison of three different methods. Acta Mechanica et Automatica 2(2), 59–66 (2008)

    Google Scholar 

  26. Narendra, K.S., Shorten, R.: Hurwitz stability of Metzler matrices. IEEE Trans. Autom. Contr. 55(6), 1484–1487 (2010)

    Article  MathSciNet  Google Scholar 

  27. Sajewski, Ł.: Solution of 2D singular hybrid linear systems. Kybernetes 38(7/8), 1079–1092 (2009)

    Article  MathSciNet  Google Scholar 

  28. Xiao, Y.: Stability test for 2-D continuous-discrete systems. In: Proc. 40th IEEE Conf. on Decision and Control, vol. 4, pp. 3649–3654 (2001)

    Google Scholar 

  29. Xiao, Y.: Stability, controllability and observability of 2-D continuous-discrete systems. In: Proc. Int. Symp. on Circuits and Systems, vol. 4, pp. 468–471 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Kaczorek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kaczorek, T. (2014). A New Formulation and Solution of the Minimum Energy Control Problem of Positive 2D Continuous-Discrete Linear Systems. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Recent Advances in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-319-05353-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05353-0_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05352-3

  • Online ISBN: 978-3-319-05353-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics