Abstract
This chapter presents that part of the theory of the \(\mu\)-calculus that is relevant to the model-checking problem as broadly understood. The \(\mu\)-calculus is one of the most important logics in model checking. It is a logic with an exceptional balance between expressiveness and algorithmic properties.
The chapter describes at length the game characterization of the semantics of the \(\mu\)-calculus. It discusses the theory of the \(\mu\)-calculus starting with the tree-model property, and bisimulation invariance. Then it develops the notion of modal automaton: an automaton-based model behind the \(\mu\)-calculus. It gives a quite detailed explanation of the satisfiability algorithm, followed by results on alternation hierarchy, proof systems, and interpolation. Finally, the chapter discusses the relation of the \(\mu\)-calculus to monadic second-order logic as well as to some program and temporal logics. It also presents two extensions of the \(\mu\)-calculus that allow us to address issues such as inverse modalities.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. J. Comput. Syst. Sci. 68(2), 374–397 (2004)
Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. In: Int. Symp. on Foundations of Computer Science, pp. 100–109. IEEE, Piscataway (1997)
Andersen, H.: Model checking boolean graphs. Theor. Comput. Sci. 126(1), 3–30 (1994)
Andersen, H.R.: Partial model checking. In: Ann. Symp. on Logic in Computer Science, pp. 398–407. IEEE, Piscataway (1995)
Andréka, H., van Benthem, J., Neméti, I.: Modal logics and bounded fragments of predicate logic. J. Philos. Log. 27, 217–274 (1998)
Arnold, A.: The mu-calculus alternation-depth hierarchy is strict on binary trees. RAIRO Theor. Inform. Appl. 33, 329–339 (1999)
Arnold, A., Crubille, P.: A linear time algorithm to solve fixpoint equations on transition systems. Inf. Process. Lett. 29, 57–66 (1988)
Arnold, A., Niwiński, D.: Rudiments of \(\mu\)-Calculus. Elsevier, Amsterdam (2001)
Arnold, A., Walukiewicz, I.: Nondeterministic controllers of nondeterministic processes. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata, Texts in Logic and Games, vol. 2, pp. 29–52. Amsterdam University Press, Amsterdam (2007)
Bekic, H.: Definable operation in general algebras, and the theory of automata and flowcharts. In: Jones, C.B. (ed.) Programming Languages and Their Definition—Hans Bekic (1936–1982). LNCS, vol. 177, pp. 30–55. Springer, Heidelberg (1984)
Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and in FO mod . Trans. Comput. Log. 11(1), 4:1–4:32 (2009)
Berwanger, D.: Game logic is strong enough for parity games. Stud. Log. 75(2), 205–219 (2003)
Berwanger, D., Grädel, E., Kaiser, L., Rabinovich, R.: Entanglement and the complexity of directed graphs. Theor. Comput. Sci. 463, 2–25 (2012)
Berwanger, D., Grädel, E., Lenzi, G.: The variable hierarchy of the mu-calculus is strict. Theory Comput. Syst. 40(4), 437–466 (2007)
Berwanger, D., Serre, O.: Parity games on undirected graphs. Inf. Process. Lett. 112(23), 928–932 (2012)
Bhat, G., Cleaveland, R.: Efficient model checking via the equational \(\mu\)-calculus. In: Clarke, E.M. (ed.) Ann. Symp. on Logic in Computer Science, pp. 304–312. IEEE, Piscataway (1996)
Björklund, H., Vorobyov, S.G.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Appl. Math. 155(2), 210–229 (2007)
Blackburn, R., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)
Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)
Blumensath, A., Kreutzer, S.: An extension to Muchnik’s theorem. J. Log. Comput. 13, 59–74 (2005)
Bojanczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages. Log. Methods Comput. Sci. 8(3) (2012)
Bojanczyk, M., Straubing, H., Walukiewicz, I.: Wreath products of forest algebras, with applications to tree logics. Log. Methods Comput. Sci. 3, 19 (2012)
Bojanczyk, M., Walukiewicz, I.: Characterizing EF and EX tree logics. Theor. Comput. Sci. 358(2–3), 255–272 (2006)
Bojanczyk, M., Walukiewicz, I.: Forest algebras. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata, Texts in Logic and Games, vol. 2, pp. 107–132. Amsterdam University Press, Amsterdam (2007)
Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched mu-calculi. Log. Methods Comput. Sci. 3, 11 (2008)
Bouyer, P., Cassez, F., Laroussinie, F.: Timed modal logics for real-time systems: specification, verification and control. J. Log. Lang. Inf. 20, 169–203 (2011)
Bradfield, J.: The modal mu-calculus alternation hierarchy is strict. Theor. Comput. Sci. 195, 133–153 (1997)
Bradfield, J., Stirling, C.: Modal mu-calculi. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) The Handbook of Modal Logic, pp. 721–756. Elsevier, Amsterdam (2006)
Broadbent, C., Carayol, A., Ong, L., Serre, O.: Recursion schemes and logical reflection. In: Ann. Symp. on Logic in Computer Science, pp. 120–129. IEEE, Piscataway (2010)
Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) Intl. Conf. on Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 2914, pp. 112–124. Springer, Heidelberg (2003)
Chatterjee, K., Henzinger, M.: An \({O}(n^{2})\) time algorithm for alternating Büchi games. In: Indyk, P. (ed.) Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, Philadelphia (2012)
Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis. In: Summaries of the Summer Institute of Symbolic Logic, vol. I, pp. 3–50. Cornell University, Ithaca (1957)
Cleaveland, R., Steffen, B.: A linear model checking algorithm for the alternation-free modal \(\mu\)-caluclus. Form. Methods Syst. Des. 2, 121–147 (1993)
Colcombet, T., Zdanowski, K.: A tight lower bound for determinization of transition labeled Büchi automata. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) International Colloquium on Automata, Languages and Programming. LNCS, vol. 5556, pp. 151–162. Springer, Heidelberg (2009)
Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)
D’Agostino, G., Hollenberg, M.: Logical questions concerning the mu-calculus: interpolation, Lyndon and Łoś-Tarski. J. Symb. Log. 65(1), 310–332 (2000)
D’Agostino, G., Lenzi, G.: On modal mu-calculus over reflexive symmetric graphs. J. Log. Comput. 23(3), 445–455 (2013)
Dam, M.: CTL∗ and ECTL∗ as fragments of the modal \(\mu \)-calculus. Theor. Comput. Sci. 126(1), 77–96 (1994)
Dawar, A., Grädel, E., Kreutzer, S.: Inflationary fixed points in modal logic. Trans. Comput. Log. 5(2), 282–315 (2004)
Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1999)
Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, New York (1984)
Emerson, E., Jutla, C., Sistla, A.: On model-checking for the mu-calculus and its fragments. Theor. Comput. Sci. 258(1–2), 491–522 (2001)
Emerson, E.A.: Temporal and modal logic. In: Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)
Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. In: Int. Symp. on Foundations of Computer Science, pp. 328–337. IEEE, Piscataway (1988)
Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Int. Symp. on Foundations of Computer Science, pp. 368–377. IEEE, Piscataway (1991)
Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29(1), 132–158 (1999)
Emerson, E.A., Lei, C.: Efficient model checking in fragments of propositional mu-calculus. In: Ann. Symp. on Logic in Computer Science, pp. 267–278. IEEE, Piscataway (1986)
Fischer, D., Grädel, E., Kaiser, L.: Model checking games for the quantitative mu-calculus. Theory Comput. Syst. 47, 696–719 (2010)
Fisher, M., Ladner, R.: Propositional modal logic of programs. In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A. (eds.) Annual Symp. on the Theory of Computing, pp. 286–294. ACM, New York (1977)
Fisher, M., Ladner, R.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)
Friedmann, O.: An exponential lower bound for the latest deterministic strategy iteration algorithms. Log. Methods Comput. Sci. 3, 23 (2011)
Friedmann, O., Hansen, T.D., Zwick, U.: A subexponential lower bound for the random facet algorithm for parity games. In: Randall, D. (ed.) Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 202–216. SIAM, Philadelphia (2011)
Friedmann, O., Lange, M.: The modal mu-calculus caught off guard. In: Brünnler, K., Metcalfe, G. (eds.) Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX). LNCS, vol. 6793, pp. 149–163. Springer, Heidelberg (2011)
Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)
Gimbert, H., Zielonka, W.: Perfect information stochastic priority games. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) International Colloquium on Automata, Languages and Programming. LNCS, vol. 4596, pp. 850–861. Springer, Heidelberg (2007)
Grädel, E.: Guarded fixed point logics and the monadic theory of countable trees. Theor. Comput. Sci. 288(1), 129–152 (2002)
Grädel, E., Hirsch, C., Otto, M.: Back and forth between guarded and modal logics. Trans. Comput. Log. 3(3), 418–463 (2002)
Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema, Y., Weinstein, S.: Finite Model Theory and Its Applications. Springer, Heidelberg (2007)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games, vol. 2500. Springer, Heidelberg (2002)
Grädel, E., Walukiewicz, I.: Guarded fixed point logic. In: Ann. Symp. on Logic in Computer Science, pp. 45–55. IEEE, Piscataway (1999)
Harel, D.: Dynamic logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, Vol. II, pp. 497–604. Reidel, Dordrecht (1984)
Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111(2), 193–244 (1994)
Hitchcock, P., Park, D.: Induction rules and termination proofs. In: Nivat, M. (ed.) International Colloquium on Automata, Languages and Programming, pp. 225–251 (1973)
Hoffman, A., Karp, R.: On nonterminating stochastic games. Manag. Sci. 12, 359–370 (1966)
Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)
Janin, D., Lenzi, G.: On the relationship between monadic and weak monadic second order logic on arbitrary trees, with applications to the mu-calculus. Fundam. Inform. 61(3–4), 247–265 (2004)
Janin, D., Walukiewicz, I.: Automata for the mu-calculus and related results. In: Wiedermann, J., Hájek, P. (eds.) International Symposium on Mathematical Foundations of Computer Science. LNCS, vol. 969, pp. 552–562. Springer, Heidelberg (1995)
Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996)
Jurdziński, M.: Deciding the winner in parity games is in UP∩co-UP. Inf. Process. Lett. 68(3), 119–124 (1998)
Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)
Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)
Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) Intl. Conf. on Foundations of Software Science and Computational Structures (FoSSaCS). LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)
Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-order programs. In: Shao, Z., Pierce, B.C. (eds.) Ann. ACM Symp. on Principles of Programming Languages, pp. 416–428. ACM, New York (2009)
Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–354 (1983)
Kupferman, O.: Automata theory and model checking. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)
Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
Long, D.E., Browne, A., Clarke, E.M., Jha, S., Marrero, W.R.: An improved algorithm for the evaluation of fixpoint expressions. In: Dill, D.L. (ed.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 818, pp. 338–350. Springer, Heidelberg (1994)
Maksimova, L.L.: Absence of interpolation and of Beth’s property in temporal logics with “the next” operation. Sib. Math. J. 32(6), 109–113 (1991)
Martin, D.: Borel determinacy. Ann. Math. 102, 363–371 (1975)
McIver, A., Morgan, C.: Results on the quantitative \(\mu\)-calculus qM\(\mu\). Trans. Comput. Log. 8(1) (2007)
McMillan, K.L.: Interpolation and model checking. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)
McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Log. 65, 149–184 (1993)
Mio, M.: Game semantics for probabilistic mu-calculi. Ph.D. thesis, University of Edinburgh (2012)
Moschovakis, Y.: Elementary Induction on Abstract Structures. North-Holland, Amsterdam (1974)
Moss, L.S.: Coalgebraic logic. Ann. Pure Appl. Log. 96, 277–317 (1999). Erratum published Ann. Pure Appl. Log. 99, 241–259 (1999)
Mostowski, A.W.: Regular expressions for infinite trees and a standard form of automata. In: Skowron, A. (ed.) Fifth Symposium on Computation Theory. LNCS, vol. 208, pp. 157–168. Springer, Heidelberg (1984)
Mostowski, A.W.: Games with forbidden positions. Tech. Rep. 78, University of Gdansk (1991)
Muller, D., Schupp, P.: Alternating automata on infinite trees. Theor. Comput. Sci. 54, 267–276 (1987)
Niwiński, D.: Fixed points vs. infinite generation. In: Ann. Symp. on Logic in Computer Science, pp. 402–409. IEEE, Piscataway (1988)
Obdrzálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger, T.A. (eds.) Intl. Workshop Computer Science Logic (CSL). LNCS, vol. 4646, pp. 54–68. Springer, Heidelberg (2007)
Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes. In: Ann. Symp. on Logic in Computer Science, pp. 81–90. IEEE, Piscataway (2006)
Parikh, R.: The logic of games and its applications. Ann. Discrete Math. 24, 111–140 (1985)
Park, D.: Finiteness is \(\mu\)-ineffable. Theor. Comput. Sci. 3, 173–181 (1976)
Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. Log. Methods Comput. Sci. 3(3), 1–21 (2007)
Place, T., Segoufin, L.: A decidable characterization of locally testable tree languages. Log. Methods Comput. Sci. 7(4) (2011)
Pratt, V.: A decidable \(\mu\)-calculus: preliminary report. In: Int. Symp. on Foundations of Computer Science, pp. 421–427. IEEE, Piscataway (1981)
Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–23 (1969)
Rabin, M.O.: Weakly definable relations and special automata. In: Mathematical Logic and Foundations of Set Theory, pp. 1–23 (1970)
Safra, S.: On the complexity of \(\omega\)-automata. In: Int. Symp. on Foundations of Computer Science. IEEE, Piscataway (1988)
Salwicki, A.: Formalized algorithmic languages. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 18, 227–232 (1970)
Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) Intl. Conf. on Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 485, pp. 449–460. Springer, Heidelberg (2007)
Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games. In: Kaminski, M., Martini, S. (eds.) Intl. Workshop Computer Science Logic (CSL). LNCS, vol. 5213, pp. 369–384. Springer, Heidelberg (2008)
Schewe, S.: Büchi complementation made tight. In: Albers, S., Marion, J. (eds.) Annual Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics, vol. 3, pp. 661–672. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl (2009)
Scott, D., de Bakker, J.: A theory of programs. (1969). Unpublished notes, IBM, Vienna (1969)
Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19, 424–437 (1990)
Seidl, H.: Fast and simple nested fixpoints. Inf. Process. Lett. 59(6), 303–308 (1996)
Seidl, H., Neumann, A.: On guarding nested fixpoints. In: Flum, J., Rodríguez-Artalejo, M. (eds.) Intl. Workshop Computer Science Logic (CSL). LNCS, vol. 1683, pp. 484–498. Springer, Heidelberg (1999)
Semenov, A.: Decidability of monadic theories. In: Chytil, M., Koubek, V. (eds.) International Symposium on Mathematical Foundations of Computer Science. LNCS, vol. 176, pp. 162–175. Springer, Heidelberg (1984)
Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable. Inf. Control 54, 121–141 (1982)
Streett, R.S., Emerson, E.A.: The propositional mu-calculus is elementary. In: Paredaens, J. (ed.) International Colloquium on Automata, Languages and Programming. LNCS, vol. 172, pp. 465–472. Springer, Heidelberg (1984)
Streett, R.S., Emerson, E.A.: An automata theoretic procedure for the propositional mu-calculus. Inf. Comput. 81, 249–264 (1989)
Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 389–455. Springer, Heidelberg (1997)
Thomas, W.: Infinite games and verification. In: Brinksma, E., Larsen, K.G. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg (2002)
Thomas, W.: Constructing infinite graphs with a decidable MSO-theory. In: Rovan, B., Vojtás, P. (eds.) International Symposium on Mathematical Foundations of Computer Science. LNCS, vol. 2747, pp. 113–124. Springer, Heidelberg (2003)
Thomas, W.: Church’s problem and a tour through automata theory. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science, Lecture Notes in Computer Science, vol. 4800, pp. 635–655. Springer, Heidelberg (2008)
van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis, Napoli (1983)
Vardi, M.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) International Colloquium on Automata, Languages and Programming. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)
Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.) Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)
Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata, Texts in Logic and Games, vol. 2, pp. 629–736. Amsterdam University Press, Amsterdam (2007)
Venema, Y.: Automata and fixed point logic: a coalgebraic perspective. Inf. Comput. 204(4), 637–678 (2006)
Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games (extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)
Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional \(\mu\)-calculus. Inf. Comput. 157, 142–182 (2000)
Walukiewicz, I.: Monadic second order logic on tree-like structures. Theor. Comput. Sci. 257(1–2), 311–346 (2002)
Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Bradfield, J., Walukiewicz, I. (2018). The mu-calculus and Model Checking. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds) Handbook of Model Checking. Springer, Cham. https://doi.org/10.1007/978-3-319-10575-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-10575-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10574-1
Online ISBN: 978-3-319-10575-8
eBook Packages: Computer ScienceComputer Science (R0)