Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The mu-calculus and Model Checking

  • Chapter
  • First Online:
Handbook of Model Checking

Abstract

This chapter presents that part of the theory of the \(\mu\)-calculus that is relevant to the model-checking problem as broadly understood. The \(\mu\)-calculus is one of the most important logics in model checking. It is a logic with an exceptional balance between expressiveness and algorithmic properties.

The chapter describes at length the game characterization of the semantics of the \(\mu\)-calculus. It discusses the theory of the \(\mu\)-calculus starting with the tree-model property, and bisimulation invariance. Then it develops the notion of modal automaton: an automaton-based model behind the \(\mu\)-calculus. It gives a quite detailed explanation of the satisfiability algorithm, followed by results on alternation hierarchy, proof systems, and interpolation. Finally, the chapter discusses the relation of the \(\mu\)-calculus to monadic second-order logic as well as to some program and temporal logics. It also presents two extensions of the \(\mu\)-calculus that allow us to address issues such as inverse modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. J. Comput. Syst. Sci. 68(2), 374–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. In: Int. Symp. on Foundations of Computer Science, pp. 100–109. IEEE, Piscataway (1997)

    Google Scholar 

  3. Andersen, H.: Model checking boolean graphs. Theor. Comput. Sci. 126(1), 3–30 (1994)

    Article  MATH  Google Scholar 

  4. Andersen, H.R.: Partial model checking. In: Ann. Symp. on Logic in Computer Science, pp. 398–407. IEEE, Piscataway (1995)

    Google Scholar 

  5. Andréka, H., van Benthem, J., Neméti, I.: Modal logics and bounded fragments of predicate logic. J. Philos. Log. 27, 217–274 (1998)

    Article  MATH  Google Scholar 

  6. Arnold, A.: The mu-calculus alternation-depth hierarchy is strict on binary trees. RAIRO Theor. Inform. Appl. 33, 329–339 (1999)

    Article  MATH  Google Scholar 

  7. Arnold, A., Crubille, P.: A linear time algorithm to solve fixpoint equations on transition systems. Inf. Process. Lett. 29, 57–66 (1988)

    Article  MATH  Google Scholar 

  8. Arnold, A., Niwiński, D.: Rudiments of \(\mu\)-Calculus. Elsevier, Amsterdam (2001)

    MATH  Google Scholar 

  9. Arnold, A., Walukiewicz, I.: Nondeterministic controllers of nondeterministic processes. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata, Texts in Logic and Games, vol. 2, pp. 29–52. Amsterdam University Press, Amsterdam (2007)

    Google Scholar 

  10. Bekic, H.: Definable operation in general algebras, and the theory of automata and flowcharts. In: Jones, C.B. (ed.) Programming Languages and Their Definition—Hans Bekic (1936–1982). LNCS, vol. 177, pp. 30–55. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  11. Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and in FO mod . Trans. Comput. Log. 11(1), 4:1–4:32 (2009)

    MATH  MathSciNet  Google Scholar 

  12. Berwanger, D.: Game logic is strong enough for parity games. Stud. Log. 75(2), 205–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berwanger, D., Grädel, E., Kaiser, L., Rabinovich, R.: Entanglement and the complexity of directed graphs. Theor. Comput. Sci. 463, 2–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berwanger, D., Grädel, E., Lenzi, G.: The variable hierarchy of the mu-calculus is strict. Theory Comput. Syst. 40(4), 437–466 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Berwanger, D., Serre, O.: Parity games on undirected graphs. Inf. Process. Lett. 112(23), 928–932 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bhat, G., Cleaveland, R.: Efficient model checking via the equational \(\mu\)-calculus. In: Clarke, E.M. (ed.) Ann. Symp. on Logic in Computer Science, pp. 304–312. IEEE, Piscataway (1996)

    Google Scholar 

  17. Björklund, H., Vorobyov, S.G.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Appl. Math. 155(2), 210–229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Blackburn, R., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  19. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)

    Google Scholar 

  20. Blumensath, A., Kreutzer, S.: An extension to Muchnik’s theorem. J. Log. Comput. 13, 59–74 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bojanczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages. Log. Methods Comput. Sci. 8(3) (2012)

    Google Scholar 

  22. Bojanczyk, M., Straubing, H., Walukiewicz, I.: Wreath products of forest algebras, with applications to tree logics. Log. Methods Comput. Sci. 3, 19 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Bojanczyk, M., Walukiewicz, I.: Characterizing EF and EX tree logics. Theor. Comput. Sci. 358(2–3), 255–272 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bojanczyk, M., Walukiewicz, I.: Forest algebras. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata, Texts in Logic and Games, vol. 2, pp. 107–132. Amsterdam University Press, Amsterdam (2007)

    Google Scholar 

  25. Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched mu-calculi. Log. Methods Comput. Sci. 3, 11 (2008)

    MATH  Google Scholar 

  26. Bouyer, P., Cassez, F., Laroussinie, F.: Timed modal logics for real-time systems: specification, verification and control. J. Log. Lang. Inf. 20, 169–203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bradfield, J.: The modal mu-calculus alternation hierarchy is strict. Theor. Comput. Sci. 195, 133–153 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) The Handbook of Modal Logic, pp. 721–756. Elsevier, Amsterdam (2006)

    Google Scholar 

  29. Broadbent, C., Carayol, A., Ong, L., Serre, O.: Recursion schemes and logical reflection. In: Ann. Symp. on Logic in Computer Science, pp. 120–129. IEEE, Piscataway (2010)

    Google Scholar 

  30. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) Intl. Conf. on Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 2914, pp. 112–124. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  31. Chatterjee, K., Henzinger, M.: An \({O}(n^{2})\) time algorithm for alternating Büchi games. In: Indyk, P. (ed.) Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, Philadelphia (2012)

    Google Scholar 

  32. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis. In: Summaries of the Summer Institute of Symbolic Logic, vol. I, pp. 3–50. Cornell University, Ithaca (1957)

    Google Scholar 

  33. Cleaveland, R., Steffen, B.: A linear model checking algorithm for the alternation-free modal \(\mu\)-caluclus. Form. Methods Syst. Des. 2, 121–147 (1993)

    Article  MATH  Google Scholar 

  34. Colcombet, T., Zdanowski, K.: A tight lower bound for determinization of transition labeled Büchi automata. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) International Colloquium on Automata, Languages and Programming. LNCS, vol. 5556, pp. 151–162. Springer, Heidelberg (2009)

    Chapter  MATH  Google Scholar 

  35. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. D’Agostino, G., Hollenberg, M.: Logical questions concerning the mu-calculus: interpolation, Lyndon and Łoś-Tarski. J. Symb. Log. 65(1), 310–332 (2000)

    Article  MATH  Google Scholar 

  37. D’Agostino, G., Lenzi, G.: On modal mu-calculus over reflexive symmetric graphs. J. Log. Comput. 23(3), 445–455 (2013)

    Article  MATH  Google Scholar 

  38. Dam, M.: CTL and ECTL as fragments of the modal \(\mu \)-calculus. Theor. Comput. Sci. 126(1), 77–96 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  39. Dawar, A., Grädel, E., Kreutzer, S.: Inflationary fixed points in modal logic. Trans. Comput. Log. 5(2), 282–315 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  41. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, New York (1984)

    MATH  Google Scholar 

  42. Emerson, E., Jutla, C., Sistla, A.: On model-checking for the mu-calculus and its fragments. Theor. Comput. Sci. 258(1–2), 491–522 (2001)

    Article  MATH  Google Scholar 

  43. Emerson, E.A.: Temporal and modal logic. In: Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)

    Google Scholar 

  44. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. In: Int. Symp. on Foundations of Computer Science, pp. 328–337. IEEE, Piscataway (1988)

    Google Scholar 

  45. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Int. Symp. on Foundations of Computer Science, pp. 368–377. IEEE, Piscataway (1991)

    Google Scholar 

  46. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29(1), 132–158 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Emerson, E.A., Lei, C.: Efficient model checking in fragments of propositional mu-calculus. In: Ann. Symp. on Logic in Computer Science, pp. 267–278. IEEE, Piscataway (1986)

    Google Scholar 

  48. Fischer, D., Grädel, E., Kaiser, L.: Model checking games for the quantitative mu-calculus. Theory Comput. Syst. 47, 696–719 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Fisher, M., Ladner, R.: Propositional modal logic of programs. In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A. (eds.) Annual Symp. on the Theory of Computing, pp. 286–294. ACM, New York (1977)

    Google Scholar 

  50. Fisher, M., Ladner, R.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  51. Friedmann, O.: An exponential lower bound for the latest deterministic strategy iteration algorithms. Log. Methods Comput. Sci. 3, 23 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Friedmann, O., Hansen, T.D., Zwick, U.: A subexponential lower bound for the random facet algorithm for parity games. In: Randall, D. (ed.) Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 202–216. SIAM, Philadelphia (2011)

    Chapter  Google Scholar 

  53. Friedmann, O., Lange, M.: The modal mu-calculus caught off guard. In: Brünnler, K., Metcalfe, G. (eds.) Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX). LNCS, vol. 6793, pp. 149–163. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  54. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  55. Gimbert, H., Zielonka, W.: Perfect information stochastic priority games. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) International Colloquium on Automata, Languages and Programming. LNCS, vol. 4596, pp. 850–861. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  56. Grädel, E.: Guarded fixed point logics and the monadic theory of countable trees. Theor. Comput. Sci. 288(1), 129–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Grädel, E., Hirsch, C., Otto, M.: Back and forth between guarded and modal logics. Trans. Comput. Log. 3(3), 418–463 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema, Y., Weinstein, S.: Finite Model Theory and Its Applications. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  59. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  60. Grädel, E., Walukiewicz, I.: Guarded fixed point logic. In: Ann. Symp. on Logic in Computer Science, pp. 45–55. IEEE, Piscataway (1999)

    Google Scholar 

  61. Harel, D.: Dynamic logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, Vol. II, pp. 497–604. Reidel, Dordrecht (1984)

    Chapter  MATH  Google Scholar 

  62. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  63. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111(2), 193–244 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  64. Hitchcock, P., Park, D.: Induction rules and termination proofs. In: Nivat, M. (ed.) International Colloquium on Automata, Languages and Programming, pp. 225–251 (1973)

    Google Scholar 

  65. Hoffman, A., Karp, R.: On nonterminating stochastic games. Manag. Sci. 12, 359–370 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  66. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  67. Janin, D., Lenzi, G.: On the relationship between monadic and weak monadic second order logic on arbitrary trees, with applications to the mu-calculus. Fundam. Inform. 61(3–4), 247–265 (2004)

    MathSciNet  MATH  Google Scholar 

  68. Janin, D., Walukiewicz, I.: Automata for the mu-calculus and related results. In: Wiedermann, J., Hájek, P. (eds.) International Symposium on Mathematical Foundations of Computer Science. LNCS, vol. 969, pp. 552–562. Springer, Heidelberg (1995)

    Google Scholar 

  69. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  70. Jurdziński, M.: Deciding the winner in parity games is in UP∩co-UP. Inf. Process. Lett. 68(3), 119–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  71. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

    Google Scholar 

  72. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) Intl. Conf. on Foundations of Software Science and Computational Structures (FoSSaCS). LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  74. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-order programs. In: Shao, Z., Pierce, B.C. (eds.) Ann. ACM Symp. on Principles of Programming Languages, pp. 416–428. ACM, New York (2009)

    Google Scholar 

  75. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–354 (1983)

    Article  MATH  Google Scholar 

  76. Kupferman, O.: Automata theory and model checking. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)

    MATH  Google Scholar 

  77. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  78. Long, D.E., Browne, A., Clarke, E.M., Jha, S., Marrero, W.R.: An improved algorithm for the evaluation of fixpoint expressions. In: Dill, D.L. (ed.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 818, pp. 338–350. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  79. Maksimova, L.L.: Absence of interpolation and of Beth’s property in temporal logics with “the next” operation. Sib. Math. J. 32(6), 109–113 (1991)

    MATH  Google Scholar 

  80. Martin, D.: Borel determinacy. Ann. Math. 102, 363–371 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  81. McIver, A., Morgan, C.: Results on the quantitative \(\mu\)-calculus qM\(\mu\). Trans. Comput. Log. 8(1) (2007)

    Google Scholar 

  82. McMillan, K.L.: Interpolation and model checking. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)

    Google Scholar 

  83. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Log. 65, 149–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  84. Mio, M.: Game semantics for probabilistic mu-calculi. Ph.D. thesis, University of Edinburgh (2012)

    Google Scholar 

  85. Moschovakis, Y.: Elementary Induction on Abstract Structures. North-Holland, Amsterdam (1974)

    MATH  Google Scholar 

  86. Moss, L.S.: Coalgebraic logic. Ann. Pure Appl. Log. 96, 277–317 (1999). Erratum published Ann. Pure Appl. Log. 99, 241–259 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  87. Mostowski, A.W.: Regular expressions for infinite trees and a standard form of automata. In: Skowron, A. (ed.) Fifth Symposium on Computation Theory. LNCS, vol. 208, pp. 157–168. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  88. Mostowski, A.W.: Games with forbidden positions. Tech. Rep. 78, University of Gdansk (1991)

    Google Scholar 

  89. Muller, D., Schupp, P.: Alternating automata on infinite trees. Theor. Comput. Sci. 54, 267–276 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  90. Niwiński, D.: Fixed points vs. infinite generation. In: Ann. Symp. on Logic in Computer Science, pp. 402–409. IEEE, Piscataway (1988)

    Google Scholar 

  91. Obdrzálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger, T.A. (eds.) Intl. Workshop Computer Science Logic (CSL). LNCS, vol. 4646, pp. 54–68. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  92. Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes. In: Ann. Symp. on Logic in Computer Science, pp. 81–90. IEEE, Piscataway (2006)

    Google Scholar 

  93. Parikh, R.: The logic of games and its applications. Ann. Discrete Math. 24, 111–140 (1985)

    MathSciNet  MATH  Google Scholar 

  94. Park, D.: Finiteness is \(\mu\)-ineffable. Theor. Comput. Sci. 3, 173–181 (1976)

    Article  MATH  Google Scholar 

  95. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. Log. Methods Comput. Sci. 3(3), 1–21 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  96. Place, T., Segoufin, L.: A decidable characterization of locally testable tree languages. Log. Methods Comput. Sci. 7(4) (2011)

    Google Scholar 

  97. Pratt, V.: A decidable \(\mu\)-calculus: preliminary report. In: Int. Symp. on Foundations of Computer Science, pp. 421–427. IEEE, Piscataway (1981)

    Google Scholar 

  98. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–23 (1969)

    MathSciNet  MATH  Google Scholar 

  99. Rabin, M.O.: Weakly definable relations and special automata. In: Mathematical Logic and Foundations of Set Theory, pp. 1–23 (1970)

    Google Scholar 

  100. Safra, S.: On the complexity of \(\omega\)-automata. In: Int. Symp. on Foundations of Computer Science. IEEE, Piscataway (1988)

    Google Scholar 

  101. Salwicki, A.: Formalized algorithmic languages. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 18, 227–232 (1970)

    MathSciNet  MATH  Google Scholar 

  102. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) Intl. Conf. on Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 485, pp. 449–460. Springer, Heidelberg (2007)

    Google Scholar 

  103. Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games. In: Kaminski, M., Martini, S. (eds.) Intl. Workshop Computer Science Logic (CSL). LNCS, vol. 5213, pp. 369–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  104. Schewe, S.: Büchi complementation made tight. In: Albers, S., Marion, J. (eds.) Annual Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics, vol. 3, pp. 661–672. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl (2009)

    Google Scholar 

  105. Scott, D., de Bakker, J.: A theory of programs. (1969). Unpublished notes, IBM, Vienna (1969)

    Google Scholar 

  106. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19, 424–437 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  107. Seidl, H.: Fast and simple nested fixpoints. Inf. Process. Lett. 59(6), 303–308 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  108. Seidl, H., Neumann, A.: On guarding nested fixpoints. In: Flum, J., Rodríguez-Artalejo, M. (eds.) Intl. Workshop Computer Science Logic (CSL). LNCS, vol. 1683, pp. 484–498. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  109. Semenov, A.: Decidability of monadic theories. In: Chytil, M., Koubek, V. (eds.) International Symposium on Mathematical Foundations of Computer Science. LNCS, vol. 176, pp. 162–175. Springer, Heidelberg (1984)

    Google Scholar 

  110. Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable. Inf. Control 54, 121–141 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  111. Streett, R.S., Emerson, E.A.: The propositional mu-calculus is elementary. In: Paredaens, J. (ed.) International Colloquium on Automata, Languages and Programming. LNCS, vol. 172, pp. 465–472. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  112. Streett, R.S., Emerson, E.A.: An automata theoretic procedure for the propositional mu-calculus. Inf. Comput. 81, 249–264 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  113. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 389–455. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  114. Thomas, W.: Infinite games and verification. In: Brinksma, E., Larsen, K.G. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  115. Thomas, W.: Constructing infinite graphs with a decidable MSO-theory. In: Rovan, B., Vojtás, P. (eds.) International Symposium on Mathematical Foundations of Computer Science. LNCS, vol. 2747, pp. 113–124. Springer, Heidelberg (2003)

    Google Scholar 

  116. Thomas, W.: Church’s problem and a tour through automata theory. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science, Lecture Notes in Computer Science, vol. 4800, pp. 635–655. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  117. van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis, Napoli (1983)

    MATH  Google Scholar 

  118. Vardi, M.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) International Colloquium on Automata, Languages and Programming. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  119. Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.) Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)

    Google Scholar 

  120. Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata, Texts in Logic and Games, vol. 2, pp. 629–736. Amsterdam University Press, Amsterdam (2007)

    Google Scholar 

  121. Venema, Y.: Automata and fixed point logic: a coalgebraic perspective. Inf. Comput. 204(4), 637–678 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  122. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games (extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  123. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional \(\mu\)-calculus. Inf. Comput. 157, 142–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  124. Walukiewicz, I.: Monadic second order logic on tree-like structures. Theor. Comput. Sci. 257(1–2), 311–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  125. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Walukiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bradfield, J., Walukiewicz, I. (2018). The mu-calculus and Model Checking. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds) Handbook of Model Checking. Springer, Cham. https://doi.org/10.1007/978-3-319-10575-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10575-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10574-1

  • Online ISBN: 978-3-319-10575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics