Abstract
Robots can be important additions to human teams if they improve team performance by providing new skills or improving existing skills. However, to get the full benefits of a robot the team must trust and use it appropriately. We present an agent algorithm that allows a robot to estimate its trustworthiness and adapt its behavior in an attempt to increase trust. It uses case-based reasoning to store previous behavior adaptations and uses this information to perform future adaptations. We compare case-based behavior adaptation to behavior adaptation that does not learn and show it significantly reduces the number of behaviors that need to be evaluated before a trustworthy behavior is found. Our evaluation is in a simulated robotics environment and involves a movement scenario and a patrolling/threat detection scenario.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Oleson, K.E., Billings, D.R., Kocsis, V., Chen, J.Y., Hancock, P.A.: Antecedents of trust in human-robot collaborations. In: 1st International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support, pp. 175–178 (2011)
Desai, M., Kaniarasu, P., Medvedev, M., Steinfeld, A., Yanco, H.: Impact of robot failures and feedback on real-time trust. In: 8th International Conference on Human-robot Interaction, pp. 251–258 (2013)
Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artificial Intelligence Review 24(1), 33–60 (2005)
Kaniarasu, P., Steinfeld, A., Desai, M., Yanco, H.A.: Robot confidence and trust alignment. In: 8th International Conference on Human-Robot Interaction, pp. 155–156 (2013)
Jian, J.Y., Bisantz, A.M., Drury, C.G.: Foundations for an empirically determined scale of trust in automated systems. International Journal of Cognitive Ergonomics 4(1), 53–71 (2000)
Muir, B.M.: Trust between humans and machines, and the design of decision aids. International Journal of Man-Machine Studies 27(5-6), 527–539 (1987)
Hancock, P.A., Billings, D.R., Schaefer, K.E., Chen, J.Y., De Visser, E.J., Parasuraman, R.: A meta-analysis of factors affecting trust in human-robot interaction. Human Factors: The Journal of the Human Factors and Ergonomics Society 53(5), 517–527 (2011)
Carlson, M.S., Desai, M., Drury, J.L., Kwak, H., Yanco, H.A.: Identifying factors that influence trust in automated cars and medical diagnosis systems. In: AAAI Symposium on the Intersection of Robust Intelligence and Trust in Autonomous Systems, pp. 20–27 (2014)
Kaniarasu, P., Steinfeld, A., Desai, M., Yanco, H.A.: Potential measures for detecting trust changes. In: 7th International Conference on Human-Robot Interaction, pp. 241–242 (2012)
Knexus Research Corporation: eBotworks (2013), http://www.knexusresearch.com/products/ebotworks.php (Online; accessed April 9, 2014)
Floyd, M.W., Drinkwater, M., Aha, D.W.: Adapting autonomous behavior using an inverse trust estimation. In: Murgante, B., et al. (eds.) ICCSA 2014, Part I. LNCS, vol. 8579, pp. 728–742. Springer, Heidelberg (2014)
Saleh, J.A., Karray, F., Morckos, M.: Modelling of robot attention demand in human-robot interaction using finite fuzzy state automata. In: International Conference on Fuzzy Systems, pp. 1–8 (2012)
Tavakolifard, M., Herrmann, P., Öztürk, P.: Analogical trust reasoning. In: Ferrari, E., Li, N., Bertino, E., Karabulut, Y. (eds.) IFIPTM 2009. IFIP AICT, vol. 300, pp. 149–163. Springer, Heidelberg (2009)
Briggs, P., Smyth, B.: Provenance, trust, and sharing in peer-to-peer case-based web search. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 89–103. Springer, Heidelberg (2008)
Leake, D., Whitehead, M.: Case provenance: The value of remembering case sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 194–208. Springer, Heidelberg (2007)
Ros, R., Veloso, M.M., de Mà ntaras, R.L., Sierra, C., Arcos, J.-L.: Retrieving and reusing game plays for robot soccer. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 47–61. Springer, Heidelberg (2006)
Likhachev, M., Arkin, R.C.: Spatio-temporal case-based reasoning for behavioral selection. In: International Conference on Robotics and Automation, pp. 1627–1634 (2001)
Urdiales, C., Peula, J.M., Fernández-Carmona, M., Sandoval, F.: Learning-based adaptation for personalized mobility assistance. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp. 329–342. Springer, Heidelberg (2013)
Shapiro, D., Shachter, R.: User-agent value alignment. In: Stanford Spring Symposium - Workshop on Safe Learning Agents (2002)
McGinty, L., Smyth, B.: On the role of diversity in conversational recommender systems. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 276–290. Springer, Heidelberg (2003)
Maes, P., Kozierok, R.: Learning interface agents. In: 11th National Conference on Artificial Intelligence, pp. 459–465 (1993)
Horvitz, E.: Principles of mixed-initiative user interfaces. In: 18th Conference on Human Factors in Computing Systems, pp. 159–166 (1999)
Breazeal, C., Gray, J., Berlin, M.: An embodied cognition approach to mindreading skills for socially intelligent robots. International Journal of Robotic Research 28(5) (2009)
Li, N., Kambhampati, S., Yoon, S.W.: Learning probabilistic hierarchical task networks to capture user preferences. In: 21st International Joint Conference on Artificial Intelligence, pp. 1754–1759 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Floyd, M.W., Drinkwater, M., Aha, D.W. (2014). How Much Do You Trust Me? Learning a Case-Based Model of Inverse Trust. In: Lamontagne, L., Plaza, E. (eds) Case-Based Reasoning Research and Development. ICCBR 2014. Lecture Notes in Computer Science(), vol 8765. Springer, Cham. https://doi.org/10.1007/978-3-319-11209-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-11209-1_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11208-4
Online ISBN: 978-3-319-11209-1
eBook Packages: Computer ScienceComputer Science (R0)