Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Increasing Top-20 Diversity Through Recommendation Post-processing

  • Conference paper
  • First Online:
Semantic Web Evaluation Challenge (SemWebEval 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 475))

Included in the following conference series:

Abstract

This paper presents two different methods for diversifying recommendations that were developed as part of the ESWC2014 challenge. Both methods focus on post-processing recommendations provided by the baseline recommender system and have increased the ILD at the cost of final precision (measured with F@20). The authors feel that this method has potential yet requires further development and testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dey, A., Abowd, G.: Towards a better understanding of context and context-awareness, pp. 304–307 (1999)

    Google Scholar 

  2. Košir, A., Odic, A., Kunaver, M., Tkalcic, M., Tasic, J.F.: Database for contextual personalization. Elektrotehniški vestnik 78(5), 270–274 (2011)

    Google Scholar 

  3. Odic, A., Tkalcic, M., Košir, A.: Managing irrelevant contextual categories in a movie recommender system. In: Human Decision Making in Recommender Systems (Decisions@ RecSys 13), p. 29 (2013)

    Google Scholar 

  4. Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Jannach, D., Lerche, L., Gedikli, F., Bonnin, G.: What recommenders recommend – an analysis of accuracy, popularity, and sales diversity effects. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 25–37. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  7. Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. IEEE Trans. Knowl. Data Eng. 24(5), 896–911 (2012)

    Article  Google Scholar 

  8. Požrl, T., Kunaver, M., Pogačnik, M., Košir, A., Tasič, J.F.: Improving human-computer interaction in personalized tv recommender. Int. J. Sci. Technol. Trans. Electr. Eng. 36(E1), 19–36 (2012)

    Google Scholar 

  9. Ziegler, C.-N., McNee, S.M., Konstan, J.A, Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32. ACM (2005)

    Google Scholar 

Download references

Acknowledgments

Operation part financed by the European Union, European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matevž Kunaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kunaver, M., Požrl, T., Dobravec, Š., Droftina, U., Košir, A. (2014). Increasing Top-20 Diversity Through Recommendation Post-processing. In: Presutti, V., et al. Semantic Web Evaluation Challenge. SemWebEval 2014. Communications in Computer and Information Science, vol 475. Springer, Cham. https://doi.org/10.1007/978-3-319-12024-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12024-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12023-2

  • Online ISBN: 978-3-319-12024-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics