Abstract
This paper presents two different methods for diversifying recommendations that were developed as part of the ESWC2014 challenge. Both methods focus on post-processing recommendations provided by the baseline recommender system and have increased the ILD at the cost of final precision (measured with F@20). The authors feel that this method has potential yet requires further development and testing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dey, A., Abowd, G.: Towards a better understanding of context and context-awareness, pp. 304–307 (1999)
Košir, A., Odic, A., Kunaver, M., Tkalcic, M., Tasic, J.F.: Database for contextual personalization. Elektrotehniški vestnik 78(5), 270–274 (2011)
Odic, A., Tkalcic, M., Košir, A.: Managing irrelevant contextual categories in a movie recommender system. In: Human Decision Making in Recommender Systems (Decisions@ RecSys 13), p. 29 (2013)
Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001)
Jannach, D., Lerche, L., Gedikli, F., Bonnin, G.: What recommenders recommend – an analysis of accuracy, popularity, and sales diversity effects. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 25–37. Springer, Heidelberg (2013)
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. IEEE Trans. Knowl. Data Eng. 24(5), 896–911 (2012)
Požrl, T., Kunaver, M., Pogačnik, M., Košir, A., Tasič, J.F.: Improving human-computer interaction in personalized tv recommender. Int. J. Sci. Technol. Trans. Electr. Eng. 36(E1), 19–36 (2012)
Ziegler, C.-N., McNee, S.M., Konstan, J.A, Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32. ACM (2005)
Acknowledgments
Operation part financed by the European Union, European Social Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kunaver, M., Požrl, T., Dobravec, Š., Droftina, U., Košir, A. (2014). Increasing Top-20 Diversity Through Recommendation Post-processing. In: Presutti, V., et al. Semantic Web Evaluation Challenge. SemWebEval 2014. Communications in Computer and Information Science, vol 475. Springer, Cham. https://doi.org/10.1007/978-3-319-12024-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-12024-9_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12023-2
Online ISBN: 978-3-319-12024-9
eBook Packages: Computer ScienceComputer Science (R0)