Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Privacy-Enhanced Participatory Sensing with Collusion Resistance and Data Aggregation

  • Conference paper
Cryptology and Network Security (CANS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8813))

Included in the following conference series:

Abstract

Participatory sensing enables new paradigms and markets for information collection based on the ubiquitous availability of smartphones, but also introduces privacy challenges for participating users and their data. In this work, we review existing security models for privacy-preserving participatory sensing and propose several improvements that are both of theoretical and practical significance.

We first address an important drawback of prior work, namely the lack of consideration of collusion attacks that are highly relevant for such multi-user settings. We explain why existing security models are insufficient and why previous protocols become insecure in the presence of colluding parties. We remedy this problem by providing new security and privacy definitions that guarantee meaningful forms of collusion resistance. We propose new collusion-resistant participatory sensing protocols satisfying our definitions: a generic construction that uses anonymous identity-based encryption (IBE) and its practical instantiation based on the Boneh-Franklin IBE scheme.

We then extend the functionality of participatory sensing by adding the ability to perform aggregation on the data submitted by the users, without sacrificing their privacy. We realize this through an additively-homomorphic IBE scheme which in turn is constructed by slightly modifying the Boneh-Franklin IBE scheme. From a practical point of view, the resulting scheme is suitable for calculations with small sensor readings/values such as temperature measurements, noise levels, or prices, which is sufficient for many applications of participatory sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. SIAM Journal on Computing 32(3), 586–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (Without Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., Triandopoulos, N.: AnonySense: Privacy-Aware People-Centric Sensing. In: Grunwald, D., Han, R., de Lara, E., Ellis, C.S. (eds.) MobiSys 2008, pp. 211–224. ACM, New York (2008)

    Google Scholar 

  7. De Cristofaro, E., Soriente, C.: Short Paper: PEPSI: Privacy-Enhanced Participatory Sensing Infrastructure. In: Gollmann, D., Westhoff, D., Tsudik, G., Asokan, N. (eds.) WISEC 2011, pp. 23–28. ACM, New York (2011)

    Google Scholar 

  8. De Cristofaro, E., Soriente, C.: Extended Capabilities for a Privacy-Enhanced Participatory Sensing Infrastructure (PEPSI). IEEE Transactions on Information Forensics and Security 8(12), 2021–2033 (2013)

    Article  Google Scholar 

  9. De Cristofaro, E., Soriente, C.: Participatory Privacy: Enabling Privacy in Participatory Sensing. IEEE Network 27(1), 32–36 (2013)

    Article  Google Scholar 

  10. D’Hondt, E., Stevens, M., Jacobs, A.: Participatory noise mapping works! An evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive and Mobile Computing 9(5), 681–694 (2013)

    Article  Google Scholar 

  11. Dimitriou, T., Krontiris, I., Sabouri, A.: PEPPeR: A Querier’s Privacy Enhancing Protocol for PaRticipatory Sensing. In: Schmidt, A.U., Russello, G., Krontiris, I., Lian, S. (eds.) MobiSec 2012. LNICST, vol. 107, pp. 93–106. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Eisenman, S.B., Miluzzo, E., Lane, N.D., Peterson, R.A., Ahn, G.S., Campbell, A.T.: The BikeNet mobile sensing system for cyclist experience mapping. In: Jha, S. (ed.) SenSys 2007, pp. 87–101. ACM, New York (2007)

    Google Scholar 

  13. European Parliament and Council: EU Directive 95/46/EC (1995), http://www.dataprotection.ie/viewdoc.asp?docid=89

  14. Ganti, R.K., Pham, N., Tsai, Y.E., Abdelzaher, T.F.: PoolView: Stream Privacy for Grassroots Participatory Sensing. In: Abdelzaher, T.F., Martonosi, M., Wolisz, A. (eds.) SenSys 2008, pp. 281–294. ACM, New York (2008)

    Google Scholar 

  15. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Günther, F., Manulis, M., Peter, A.: Privacy-Enhanced Participatory Sensing with Collusion Resistance and Data Aggregation. Cryptology ePrint Archive, Report 2014/382 (2014), http://eprint.iacr.org/

  17. Huang, K.L., Kanhere, S.S., Hu, W.: Preserving privacy in participatory sensing systems. Computer Communications 33(11), 1266–1280 (2010)

    Article  Google Scholar 

  18. Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E., Balakrishnan, H., Madden, S.: CarTel: A Distributed Mobile Sensor Computing System. In: Campbell, A.T., Bonnet, P., Heidemann, J.S. (eds.) SenSys 2006, pp. 125–138. ACM, New York (2006)

    Google Scholar 

  19. Li, Q., Cao, G.: Efficient Privacy-Preserving Stream Aggregation in Mobile Sensing with Low Aggregation Error. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 60–81. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Özdemir, S., Xiao, Y.: Secure data aggregation in wireless sensor networks: A comprehensive overview. Computer Networks 53(12), 2022–2037 (2009)

    Article  Google Scholar 

  21. Shi, J., Zhang, R., Liu, Y., Zhang, Y.: PriSense: Privacy-Preserving Data Aggregation in People-Centric Urban Sensing Systems. In: INFOCOM 2010, pp. 758–766. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Günther, F., Manulis, M., Peter, A. (2014). Privacy-Enhanced Participatory Sensing with Collusion Resistance and Data Aggregation. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds) Cryptology and Network Security. CANS 2014. Lecture Notes in Computer Science, vol 8813. Springer, Cham. https://doi.org/10.1007/978-3-319-12280-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12280-9_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12279-3

  • Online ISBN: 978-3-319-12280-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics