Abstract
The following chapter outlines the properties of the human visual system as optical system as well as the processing stages taking place between the capturing of light in the retina and generation of a mental scene representation in the visual cortex. Therefore, the visual pathway is followed from the neuronal cascade triggered by electromagnetic stimulation of the retina, which routes through the visual preprocessor (lateral geniculate nucleus) and terminates in the visual cortex where the neuronal signal is reassembled to a mental reflection of the viewed scene. Furthermore, a closer look on the subconscious processing of depth and motion cues as well as on visual search-and-find is taken. Especially the role of lower level neuronal processing stages in the retina and the lateral geniculate nucleus and their sensitivity to pictorial cues is analyzed. Based on these findings new rendering techniques may manipulate the output of low level neuronal processing stages by utilizing pictorial cues to induce or enhance the perception of distance, velocity, or saliency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
C. Rößing: Video and image manipulation for enhanced perception. Dissertation, University Ulm. http://vts.uni-ulm.de/doc.asp?id=9319 (2014)
Mather, G.: Foundations of Perception, 1st edn., p. 388. Psychology Press, Hove (2006). ISBN: 0863778348
Riordan-Eva, P., Cunningham, E.T.: Vaughan Asbury’s General Ophthalmology, p. 492. Mcgraw-Hill Professional (2011). ISBN: 0071634207
Hess, E.H., Polt, J.M.: Pupil size as related to interest value of visual stimuli. Science 132, 349–350 (1960). doi:10.1126/science.132.3423.349, ISSN: 0036-8075
Held, R.T., Cooper, E.A., O’Brien, J.F., Banks, M.S.: Using blur to affect perceived distance and size. ACM Trans. Graph. 29(2), 1–16 (2010). doi:10.1145/1731047.1731057, http://portal.acm.org/citation.cfm?doid=1731047.1731057 ISSN: 07300301
Rushton, W.: Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision. J. Physiol. 156, 193–205 (1961)
Purves, D., Augustine, G.J., Fitzpatrick D.: Neuroscience, 3rd edn., pp. 1–773. Sinauer Associates, Sunderland (2004). doi: 978-0878937257, http://www.amazon.com/Neuroscience-CDROM-Dale-Purves/dp/0878937250, ISBN: 0878937250
Lennie, P.: Color vision: putting it together. Curr. Biol. 10(16), R589–R591 (2000). doi:http://dx.doi.org/10.1016/S0960-9822(00)00632-1 . http://www.sciencedirect.com/science/article/pii/S0960982200006321, ISSN:0960-9822
Stockman, A., Sharpe, L.T.: The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40(13), 1711–1737 (2000). doi:10.1016/S0042-6989(00)00021-3, ISSN: 00426989
R. H. Masland, “The fundamental plan of the retina.”, Nature neuroscience, vol. 4, pp. 877–886, 2001, issn: 1097-6256. doi: 10.1038/nn0901-877
R. W. Rodieck, The First Steps in Seeing. Sinauer, 1998, p. 367
Campbell, F.W., Robson J.G.: Application of fourier analysis to the visibility of gratings. J. Physiol. 197, 551–566 (1968). ISSN: 0022-3751
IJspeert, J.K., van den Berg, T.J., Spekreijse, H.: An improved mathematical description of the foveal visual point spread function with parameters for age, pupil size and pigmentation. Vis. Res. 33, 15–20 (1993). doi:10.1016/0042-6989(93)90053-Y, ISSN: 00426989
Derrington, A.M., Lennie, P.: Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol. 357, 219–240 (1984)
Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)
De Valois, R.L., Albrecht, D.G., Thorell L.G.: Spatial frequency selectivity of cells in macaque visual cortex. Vis. Res. 22(5), 545–59 (1982). http://www.ncbi.nlm.nih.gov/pubmed/7112954, ISSN: 0042-6989
Mikami, A., Newsome, W.T., Wurtz, R.H.: Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. J. Neurophysio. 55(6), 1308–1327 (1986). ISSN: 0022-3077
Hirschmüller, H., Innocent, P.R., Garibaldi, J.: Real-time correlation-based stereo vision with reduced border errors. Int. J. Comput. Vis. 47(1), 229–246 (2002). doi:10.1023/A:1014554110407, http://www.springerlink.com/content/72d01vcdjd798bay/, ISSN: 09205691
Johnson, E.N., Hawken, M.J., Shapley, R.: The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat. Neurosci. 4(4), 409–16 (2001). doi: 10.1038/86061, http://www.ncbi.nlm.nih.gov/pubmed/11276232, ISSN: 1097-6256
Schnapf, J., Baylor, D.: How photoreceptor cells respond to light. Sci. Am. 254(4), 32–39 (1987)
E01: London bus. http://flickr.com/photo/10158179@N06/2334039881. Accessed 03 Apr2014
Burr, D.C., Ross, J., Morrone, M.C.: Seeing objects in motion. In: Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain), vol. 227(1247), pp. 249–265, 1986. doi:10.1098/rspb.1986.0022, ISSN: 0962-8452
Burr, D.C., Ross, J.: Direct evidence that “speedlines” influence motion mechanisms. J. Neurosci. (The official journal of the Society for Neuroscience) 22(19), 8661–8664 (2002). doi:22/19/8661[pii], ISSN: 1529-2401
Geisler, W.S.: Motion streaks provide a spatial code for motion direction. Nature 400(6739), 65–69 (1999). doi:10.1038/21886, ISSN: 0028-0836
Kourtzi, Z., Kanwisher, N.:Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci. 12(1), 48–55 (2000). doi:10.1162/08989290051137594, http://dx.doi.org/10.1162/08989290051137594, ISSN: 0898-929X
Lorteije, J.A.M., Kenemans, J. L., Jellema, T., van der Lubbe, R.H.J., Lommers, M.W., van Wezel, R.J.A.: Adaptation to real motion reveals directionselective interactions between real and implied motion processing. J. Cogn. Neurosci. 19(8), 1231–1240 (2007). doi:10.1162/jocn.2007.19.8.1231, ISSN: 0898-929X
Peuskens, H., Vanrie, J., Verfaillie, K., Orban, G.A.: Specificity of regions processing biological motion. Eur. J. Neurosci. 21(10), 2864–2875 (2005). doi: 10.1111/j.1460- 9568.2005.04106.x, ISSN: 0953-816X
Senior, C., Barnes, J., Giampietro, V., Simmons, A., Bullmore, E.T., Brammer, M., David, A.S.: The functional neuroanatomy of implicit-motion perception or representational momentum. Curr. Biol.: CB, 10(1), 16–22 (2000) doi: 10.1016/S0960-9822(99)00259-6, ISSN: 09609822
Winawer, J., Huk, A.C., Boroditsky, L.: A motion aftereffect from still photographs depicting motion. Psychol. Sci.: A J. Am. Psychol. Soc./APS, 19(3), 276–283 (2008). doi:10.1111/j.1467-9280.2008.02080.x, ISSN: 0956-7976
Wohlgemuth, A.: On the after-effect of seen movement. Ph.D. thesis, p. 148, Cambridge (1911)
Bruce, V., Green, P., Georgeson, M.: Visual Perception: Physiology, Psychology and Ecology, p. 496. Routledge (2003). ISBN: 1841692387
Landy, M.S., Graham, N.: Visual perception of texture. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neurosciences, pp. 1106–1118. MIT Press, Cambridge (2004). ch. 9
Wertheimer, M.: Experimentelle studien über das sehen von bewegung. Zeitschrift für Psychologie (1912) http://www.getcited.org/cits/PP/1/PUB/103413947
Morgan, M.J., Hotopf, W.H.: Perceived diagonals in grids and lattices. Vis. Res. 29(8), 1005–1015 (1989). doi:10.1016/0042-6989(89)90115-6, ISSN: 00426989
Marr, D.: Early processing of visual information. Phil. Trans. R. Soc. Lond. B Biol. Sci. 275(942), 483–519 (1976). ISSN: 0962-8436
Nakayama, K., He, Z.J., Shimojo, S.: Visual surface representation: a critical link between lower-level and higher-level vision. In: Kosslyn, S., Osherson, D. (eds.) In Invitation to Cognitive Science, pp. 1–70. MIT Press, Cambridge (1995). http://books.google.com/books?hl=en, ISBN: 0-262-15042-5
Moulden, B.: Collator units: second-stage orientational filters. In: Ciba Foundation symposium, vol. 184, pp. 170–184. Discussion 184-192, 269-271 (1994)
Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for a local “association field”. Vis. Res. 33(2), 173–193 (1993). doi:10.1016/0042-6989(93)90156-Q, ISSN: 00426989
Biederman, I., Gerhardstein, P.C.: Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. J. Exp. Psychol. Hum. Percept. Perform. 19(6), 1162–1182 (1993). doi:10.1037/h0090355, ISSN: 0096-1523
Tarr M.J., Bülthoff, H.H.: Is human object recognition better described by geon structural descriptions or by multiple views? comment on biederman and gerhardstein (1993). J. Exp. Psychol. Hum. Percept. Perform. 21(6), 1494–1505 (1995). doi: 10.1037/0096-1523.21.6.1494, ISSN: 0096-1523
Marr, D., Nishihara, H.K.: Representation and recognition of the spatial organization of three-dimensional shapes. In: Proc. R. Soc. Lond.. Ser. B, Containing papers of a Biological character. Royal Society (Great Britain), 200(1140), 269–294 (1978). doi:10.1098/rspb.1978.0020, ISSN: 0962-8452
Treisman, A., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980). doi: 10.1016/0010-0285(80)90005-5, http://www.ncbi.nlm.nih.gov/pubmed/7351125, ISSN: 00100285
Wolfe, J.M.: Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev. 1(2), 202–238 (1994). doi:10.1037/0096-1523.15.3.419. , http://www.springerlink.com/index/C0234T6313755617.pdf, ISSN: 10699384
Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001). doi:10.1038/35058500, ISSN: 1471-003X
Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18, 193–222 (1995). doi:10.1146/annurev.ne.18.030195.001205, ISSN: 0147006X
Riebe, C., DiPaola, S., Enns, J.T.: Rembrandt’s textural agency: a shared perspective in visual art and science. Leonardo (2010). doi:10.1162/leon.2010.43.2.145
Cole, F., Decarlo, D., Finkelstein A., Kin K., Morley K., Santella A.: Directing gaze in 3d models with stylized focus. Focus (2006)
Kosara, R., Tscheligi, M.: Useful properties of semantic depth of field for better f + c visualization, Image. Rochester, New York (2002)
Howard, I.P., Rogers, B.J.: Binocular vision and stereopsis, p. 736. Oxford University Press, Oxford (1995)
Glennerster, A.: Dmax for stereopsis and motion in random dot displays. Vis. Res. 38(6), 925–935 (1998). doi:10.1016/S0042-6989(97)00213-7, ISSN: 00426989
Blakemore, C.: The range and scope of binocular depth discrimination in man. J. Physiol. 211(3), 599–622 (1970)
Richards, W.: Stereopsis and stereoblindness. Exp.Brain Res. Experimentelle Hirnforschung. Experimentation cerebrale 10(4), 380–388 (1970). doi:10.1007/BF02324765, ISSN: 0014-4819
Ittelson, W.H.: Size as a cue to distance; radial motion. Am. J. Psychol. 64(2), 188–202 (1951)
Ooi, T.L., Wu, B., He, Z.J.: Distance determined by the angular declination below the horizon. Nature 414(6860), 197–200 (2001). doi:10.1038/35102562, ISSN: 0028-0836
Knill, D.C.: Discrimination of planar surface slant from texture: human and ideal observers compared. Vis. Res. 38(11), 1683–1711 (1998). doi:10.1016/S0042-6989(97)00325-8, ISSN: 00426989
Pentland, A.P.: A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 523–531 (1987). doi:10.1109/TPAMI.1987.4767940, ISSN: 0162-8828
Marshall, J.A., Burbeck, C.A, Ariely, D., Rolland, J.P., Martin K.E.: Occlusion edge blur: a cue to relative visual depth. J. Opt. Soc. Am. A, Opt., Image Sci. Vis. 13(4), 681–688 (1996)
Mather, G.: Image blur as a pictorial depth cue. In: Proc. R. Soc. Lond. Biol. Sci. 263, 169–172 (1996)
Watt, R.J., Morgan, M.J.: Spatial filters and the localization of luminance changes in human vision. Vis. Res. 24(10), 1387–1397 (1984). doi:10.1016/0042-6989(84)90194-9, ISSN: 00426989
Mather, G., Smith, D.R.R.: Blur discrimination and its relation to blurmediated depth perception. Perception 31(10), 1211–1219 (2002)
Mather, G.: The use of image blur as a depth cue. Perception 26(9), 1147–1158 (1997)
Palmer, S.E., Brooks, J.L.: Edge-region grouping in figure-ground organization and depth perception. J. Exp. Psychol. Hum. Percept. Perform. 34(6), 1353–1371 (2008)
Hillaire, S., Lecuyer, A., Cozot, R., Casiez, G.: Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments. In: Proceedings of the Virtual Reality Conference, VR ‘08. IEEE, vol. 28(6), pp. 47–50 (2008). doi:10.1109/VR.2008.4480749, ISSN: 0272-1716
Potmesil, M., Chakravarty, I.: A lens and aperture camera model for synthetic image generation. ACM SIGGRAPH (1981). doi:10.1145/965161.806818
Porter, T., Carpenter, L., Cook, R.L.: Distributed ray tracing (1984). doi:10.1145/964965.808590
Fearing, P.: Importance ordering for real-time depth of field, in Image Analysis Applications and Computer Graphics, 1995, pp. 372–380, isbn: 978-3-540-60697-0
Rokita, P.: Generating depth-of-field effects in virtual reality applications. IEEE Comput. Graph. Appl. 16(2), 18–21 (1996)
Barsky, B.A.: Vision-realistic rendering: simulation of the scanned foveal image from wavefront data of human subjects. In: Proceedings of the 1st Symposium on Applied perception in graphics and visualization - APGV ‘04, vol. 1, p. 73. ACM Press (2004). doi:10.1145/1012551.1012564, http://dl.acm.org/citation.cfm?id=1012564, ISBN: 1581139144
Mulder, J.D., van Liere R.: Fast perception-based depth of field rendering. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, ser. VRST ’00, pp. 129–133, New York (2000).doi:10.1145/502390.502414, http://doi.acm.org/10.1145/502390.502414, ISBN: 1-58113-316-2
Yu, X., Wang, R., Yu, J.: Real-time depth of field rendering via dynamic light field generation and filtering. Eecisudeledu 29(7). Alliez, P., Bala, K., Zhou, K. (eds.) (2010). http://www.eecis.udel.edu/~jye/lab%5C_research/10/pgdof.pdf
Yu, Z., Thorpe, C., Yu, X., Grauer-Gray, S., Li, F., Yu J.: Dynamic depth of field on live video streams: a stereo solution. Cis.udel.edu. http://www.cis.udel.edu/~feli/%5C_papers/cgi11.pdf
Koenderink, J.J., van Doorn, A.J., Kappers, A.M.: Pictorial surface attitude and local depth comparisons. Percep. Psychophys. 58(2), 163–173 (1996), doi:10.3758/BF03211873, ISSN: 0031-5117
Kersten, D., Knill, D.C., Mamassian, P., Bülthoff, I.: Illusory motion from shadows. (1996). doi:10.1038/379031a0
Langer, M.S., Bülthoff, H.H.: Depth discrimination from shading under diffuse lighting. Perception 29(6), 649–660 (2000). http://www.ncbi.nlm.nih.gov/pubmed/11040949
Luft, T., Colditz, C., Deussen, O.: Image enhancement by unsharp masking the depth buffer (2005)
O’Shea, R.P., Blackburn, S.G., Ono, H.: Contrast as a depth cue. Vis. Res. 34(12), 1595–1604 (1994). doi:10.1016/0042-6989(94)90116-3, ISSN: 00426989
Troscianko, T., Montagnon, R., Le Clerc, J., Malbert, E., Chanteau, P.L.: The role of colour as a monocular depth cue. Vis. Res. 31(11), 1923–1929 (1991). http://www.ncbi.nlm.nih.gov/pubmed/1771776
Buelthoff, H., Mallot, H.: Integration of stereo, shading and texture. In: Blake and Troscianko (eds.) Al and the eye, pp. 119–146. Wiley, New York (1990)
Buckley, D., Frisby, J.P.: Interaction of stereo, texture and outline cues in the shape perception of three-dimensional ridges. Vis. Res. 33(7), 919–933 (1993). . doi:10.1016/0042-6989(93)90075-8, ISSN: 00426989
Cumming, B.G., Johnston, E.B., Parker, A.J.: Vertical disparities and perception of three-dimensional shape. Nature 349(6308), 411–413 (1991) doi:10.1038/349411a0, ISSN: 0028-0836
Johnston, E.B., Cumming, B.G., Landy, M.S.: Integration of stereopsis and motion shape cues. Vis. Res. 34(17), 2259–2275 (1994) doi:10.1016/0042-6989(94)90106-6, ISSN: 00426989
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Rößing, C. (2016). Human Visual Perception. In: Terzis, A. (eds) Handbook of Camera Monitor Systems. Augmented Vision and Reality, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-29611-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-29611-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29609-8
Online ISBN: 978-3-319-29611-1
eBook Packages: EngineeringEngineering (R0)