Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Human Visual Perception

  • Chapter
  • First Online:
Handbook of Camera Monitor Systems

Part of the book series: Augmented Vision and Reality ((Augment Vis Real,volume 5))

Abstract

The following chapter outlines the properties of the human visual system as optical system as well as the processing stages taking place between the capturing of light in the retina and generation of a mental scene representation in the visual cortex. Therefore, the visual pathway is followed from the neuronal cascade triggered by electromagnetic stimulation of the retina, which routes through the visual preprocessor (lateral geniculate nucleus) and terminates in the visual cortex where the neuronal signal is reassembled to a mental reflection of the viewed scene. Furthermore, a closer look on the subconscious processing of depth and motion cues as well as on visual search-and-find is taken. Especially the role of lower level neuronal processing stages in the retina and the lateral geniculate nucleus and their sensitivity to pictorial cues is analyzed. Based on these findings new rendering techniques may manipulate the output of low level neuronal processing stages by utilizing pictorial cues to induce or enhance the perception of distance, velocity, or saliency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Rößing: Video and image manipulation for enhanced perception. Dissertation, University Ulm. http://vts.uni-ulm.de/doc.asp?id=9319 (2014)

  2. Mather, G.: Foundations of Perception, 1st edn., p. 388. Psychology Press, Hove (2006). ISBN: 0863778348

    Google Scholar 

  3. Riordan-Eva, P., Cunningham, E.T.: Vaughan Asbury’s General Ophthalmology, p. 492. Mcgraw-Hill Professional (2011). ISBN: 0071634207

    Google Scholar 

  4. Hess, E.H., Polt, J.M.: Pupil size as related to interest value of visual stimuli. Science 132, 349–350 (1960). doi:10.1126/science.132.3423.349, ISSN: 0036-8075

    Google Scholar 

  5. Held, R.T., Cooper, E.A., O’Brien, J.F., Banks, M.S.: Using blur to affect perceived distance and size. ACM Trans. Graph. 29(2), 1–16 (2010). doi:10.1145/1731047.1731057, http://portal.acm.org/citation.cfm?doid=1731047.1731057 ISSN: 07300301

    Google Scholar 

  6. Rushton, W.: Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision. J. Physiol. 156, 193–205 (1961)

    Google Scholar 

  7. Purves, D., Augustine, G.J., Fitzpatrick D.: Neuroscience, 3rd edn., pp. 1–773. Sinauer Associates, Sunderland (2004). doi: 978-0878937257, http://www.amazon.com/Neuroscience-CDROM-Dale-Purves/dp/0878937250, ISBN: 0878937250

  8. Lennie, P.: Color vision: putting it together. Curr. Biol. 10(16), R589–R591 (2000). doi:http://dx.doi.org/10.1016/S0960-9822(00)00632-1 . http://www.sciencedirect.com/science/article/pii/S0960982200006321, ISSN:0960-9822

  9. Stockman, A., Sharpe, L.T.: The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40(13), 1711–1737 (2000). doi:10.1016/S0042-6989(00)00021-3, ISSN: 00426989

    Google Scholar 

  10. R. H. Masland, “The fundamental plan of the retina.”, Nature neuroscience, vol. 4, pp. 877–886, 2001, issn: 1097-6256. doi: 10.1038/nn0901-877

    Google Scholar 

  11. R. W. Rodieck, The First Steps in Seeing. Sinauer, 1998, p. 367

    Google Scholar 

  12. Campbell, F.W., Robson J.G.: Application of fourier analysis to the visibility of gratings. J. Physiol. 197, 551–566 (1968). ISSN: 0022-3751

    Google Scholar 

  13. IJspeert, J.K., van den Berg, T.J., Spekreijse, H.: An improved mathematical description of the foveal visual point spread function with parameters for age, pupil size and pigmentation. Vis. Res. 33, 15–20 (1993). doi:10.1016/0042-6989(93)90053-Y, ISSN: 00426989

    Google Scholar 

  14. Derrington, A.M., Lennie, P.: Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol. 357, 219–240 (1984)

    Article  Google Scholar 

  15. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)

    Article  Google Scholar 

  16. De Valois, R.L., Albrecht, D.G., Thorell L.G.: Spatial frequency selectivity of cells in macaque visual cortex. Vis. Res. 22(5), 545–59 (1982). http://www.ncbi.nlm.nih.gov/pubmed/7112954, ISSN: 0042-6989

  17. Mikami, A., Newsome, W.T., Wurtz, R.H.: Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. J. Neurophysio. 55(6), 1308–1327 (1986). ISSN: 0022-3077

    Google Scholar 

  18. Hirschmüller, H., Innocent, P.R., Garibaldi, J.: Real-time correlation-based stereo vision with reduced border errors. Int. J. Comput. Vis. 47(1), 229–246 (2002). doi:10.1023/A:1014554110407, http://www.springerlink.com/content/72d01vcdjd798bay/, ISSN: 09205691

    Google Scholar 

  19. Johnson, E.N., Hawken, M.J., Shapley, R.: The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat. Neurosci. 4(4), 409–16 (2001). doi: 10.1038/86061, http://www.ncbi.nlm.nih.gov/pubmed/11276232, ISSN: 1097-6256

    Google Scholar 

  20. Schnapf, J., Baylor, D.: How photoreceptor cells respond to light. Sci. Am. 254(4), 32–39 (1987)

    Google Scholar 

  21. E01: London bus. http://flickr.com/photo/10158179@N06/2334039881. Accessed 03 Apr2014

  22. Burr, D.C., Ross, J., Morrone, M.C.: Seeing objects in motion. In: Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain), vol. 227(1247), pp. 249–265, 1986. doi:10.1098/rspb.1986.0022, ISSN: 0962-8452

  23. Burr, D.C., Ross, J.: Direct evidence that “speedlines” influence motion mechanisms. J. Neurosci. (The official journal of the Society for Neuroscience) 22(19), 8661–8664 (2002). doi:22/19/8661[pii], ISSN: 1529-2401

    Google Scholar 

  24. Geisler, W.S.: Motion streaks provide a spatial code for motion direction. Nature 400(6739), 65–69 (1999). doi:10.1038/21886, ISSN: 0028-0836

    Google Scholar 

  25. Kourtzi, Z., Kanwisher, N.:Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci. 12(1), 48–55 (2000). doi:10.1162/08989290051137594, http://dx.doi.org/10.1162/08989290051137594, ISSN: 0898-929X

    Google Scholar 

  26. Lorteije, J.A.M., Kenemans, J. L., Jellema, T., van der Lubbe, R.H.J., Lommers, M.W., van Wezel, R.J.A.: Adaptation to real motion reveals directionselective interactions between real and implied motion processing. J. Cogn. Neurosci. 19(8), 1231–1240 (2007). doi:10.1162/jocn.2007.19.8.1231, ISSN: 0898-929X

    Google Scholar 

  27. Peuskens, H., Vanrie, J., Verfaillie, K., Orban, G.A.: Specificity of regions processing biological motion. Eur. J. Neurosci. 21(10), 2864–2875 (2005). doi: 10.1111/j.1460- 9568.2005.04106.x, ISSN: 0953-816X

    Google Scholar 

  28. Senior, C., Barnes, J., Giampietro, V., Simmons, A., Bullmore, E.T., Brammer, M., David, A.S.: The functional neuroanatomy of implicit-motion perception or representational momentum. Curr. Biol.: CB, 10(1), 16–22 (2000) doi: 10.1016/S0960-9822(99)00259-6, ISSN: 09609822

    Google Scholar 

  29. Winawer, J., Huk, A.C., Boroditsky, L.: A motion aftereffect from still photographs depicting motion. Psychol. Sci.: A J. Am. Psychol. Soc./APS, 19(3), 276–283 (2008). doi:10.1111/j.1467-9280.2008.02080.x, ISSN: 0956-7976

    Google Scholar 

  30. Wohlgemuth, A.: On the after-effect of seen movement. Ph.D. thesis, p. 148, Cambridge (1911)

    Google Scholar 

  31. Bruce, V., Green, P., Georgeson, M.: Visual Perception: Physiology, Psychology and Ecology, p. 496. Routledge (2003). ISBN: 1841692387

    Google Scholar 

  32. Landy, M.S., Graham, N.: Visual perception of texture. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neurosciences, pp. 1106–1118. MIT Press, Cambridge (2004). ch. 9

    Google Scholar 

  33. Wertheimer, M.: Experimentelle studien über das sehen von bewegung. Zeitschrift für Psychologie (1912) http://www.getcited.org/cits/PP/1/PUB/103413947

  34. Morgan, M.J., Hotopf, W.H.: Perceived diagonals in grids and lattices. Vis. Res. 29(8), 1005–1015 (1989). doi:10.1016/0042-6989(89)90115-6, ISSN: 00426989

    Google Scholar 

  35. Marr, D.: Early processing of visual information. Phil. Trans. R. Soc. Lond. B Biol. Sci. 275(942), 483–519 (1976). ISSN: 0962-8436

    Google Scholar 

  36. Nakayama, K., He, Z.J., Shimojo, S.: Visual surface representation: a critical link between lower-level and higher-level vision. In: Kosslyn, S., Osherson, D. (eds.) In Invitation to Cognitive Science, pp. 1–70. MIT Press, Cambridge (1995). http://books.google.com/books?hl=en, ISBN: 0-262-15042-5

  37. Moulden, B.: Collator units: second-stage orientational filters. In: Ciba Foundation symposium, vol. 184, pp. 170–184. Discussion 184-192, 269-271 (1994)

    Google Scholar 

  38. Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for a local “association field”. Vis. Res. 33(2), 173–193 (1993). doi:10.1016/0042-6989(93)90156-Q, ISSN: 00426989

    Google Scholar 

  39. Biederman, I., Gerhardstein, P.C.: Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. J. Exp. Psychol. Hum. Percept. Perform. 19(6), 1162–1182 (1993). doi:10.1037/h0090355, ISSN: 0096-1523

    Google Scholar 

  40. Tarr M.J., Bülthoff, H.H.: Is human object recognition better described by geon structural descriptions or by multiple views? comment on biederman and gerhardstein (1993). J. Exp. Psychol. Hum. Percept. Perform. 21(6), 1494–1505 (1995). doi: 10.1037/0096-1523.21.6.1494, ISSN: 0096-1523

    Google Scholar 

  41. Marr, D., Nishihara, H.K.: Representation and recognition of the spatial organization of three-dimensional shapes. In: Proc. R. Soc. Lond.. Ser. B, Containing papers of a Biological character. Royal Society (Great Britain), 200(1140), 269–294 (1978). doi:10.1098/rspb.1978.0020, ISSN: 0962-8452

  42. Treisman, A., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980). doi: 10.1016/0010-0285(80)90005-5, http://www.ncbi.nlm.nih.gov/pubmed/7351125, ISSN: 00100285

    Google Scholar 

  43. Wolfe, J.M.: Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev. 1(2), 202–238 (1994). doi:10.1037/0096-1523.15.3.419. , http://www.springerlink.com/index/C0234T6313755617.pdf, ISSN: 10699384

    Google Scholar 

  44. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001). doi:10.1038/35058500, ISSN: 1471-003X

    Google Scholar 

  45. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18, 193–222 (1995). doi:10.1146/annurev.ne.18.030195.001205, ISSN: 0147006X

    Google Scholar 

  46. Riebe, C., DiPaola, S., Enns, J.T.: Rembrandt’s textural agency: a shared perspective in visual art and science. Leonardo (2010). doi:10.1162/leon.2010.43.2.145

    Google Scholar 

  47. Cole, F., Decarlo, D., Finkelstein A., Kin K., Morley K., Santella A.: Directing gaze in 3d models with stylized focus. Focus (2006)

    Google Scholar 

  48. Kosara, R., Tscheligi, M.: Useful properties of semantic depth of field for better f + c visualization, Image. Rochester, New York (2002)

    Google Scholar 

  49. Howard, I.P., Rogers, B.J.: Binocular vision and stereopsis, p. 736. Oxford University Press, Oxford (1995)

    Google Scholar 

  50. Glennerster, A.: Dmax for stereopsis and motion in random dot displays. Vis. Res. 38(6), 925–935 (1998). doi:10.1016/S0042-6989(97)00213-7, ISSN: 00426989

    Google Scholar 

  51. Blakemore, C.: The range and scope of binocular depth discrimination in man. J. Physiol. 211(3), 599–622 (1970)

    Article  Google Scholar 

  52. Richards, W.: Stereopsis and stereoblindness. Exp.Brain Res. Experimentelle Hirnforschung. Experimentation cerebrale 10(4), 380–388 (1970). doi:10.1007/BF02324765, ISSN: 0014-4819

    Google Scholar 

  53. Ittelson, W.H.: Size as a cue to distance; radial motion. Am. J. Psychol. 64(2), 188–202 (1951)

    Article  Google Scholar 

  54. Ooi, T.L., Wu, B., He, Z.J.: Distance determined by the angular declination below the horizon. Nature 414(6860), 197–200 (2001). doi:10.1038/35102562, ISSN: 0028-0836

    Google Scholar 

  55. Knill, D.C.: Discrimination of planar surface slant from texture: human and ideal observers compared. Vis. Res. 38(11), 1683–1711 (1998). doi:10.1016/S0042-6989(97)00325-8, ISSN: 00426989

    Google Scholar 

  56. Pentland, A.P.: A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 523–531 (1987). doi:10.1109/TPAMI.1987.4767940, ISSN: 0162-8828

    Google Scholar 

  57. Marshall, J.A., Burbeck, C.A, Ariely, D., Rolland, J.P., Martin K.E.: Occlusion edge blur: a cue to relative visual depth. J. Opt. Soc. Am. A, Opt., Image Sci. Vis. 13(4), 681–688 (1996)

    Google Scholar 

  58. Mather, G.: Image blur as a pictorial depth cue. In: Proc. R. Soc. Lond. Biol. Sci. 263, 169–172 (1996)

    Google Scholar 

  59. Watt, R.J., Morgan, M.J.: Spatial filters and the localization of luminance changes in human vision. Vis. Res. 24(10), 1387–1397 (1984). doi:10.1016/0042-6989(84)90194-9, ISSN: 00426989

    Google Scholar 

  60. Mather, G., Smith, D.R.R.: Blur discrimination and its relation to blurmediated depth perception. Perception 31(10), 1211–1219 (2002)

    Article  Google Scholar 

  61. Mather, G.: The use of image blur as a depth cue. Perception 26(9), 1147–1158 (1997)

    Article  Google Scholar 

  62. Palmer, S.E., Brooks, J.L.: Edge-region grouping in figure-ground organization and depth perception. J. Exp. Psychol. Hum. Percept. Perform. 34(6), 1353–1371 (2008)

    Article  Google Scholar 

  63. Hillaire, S., Lecuyer, A., Cozot, R., Casiez, G.: Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments. In: Proceedings of the Virtual Reality Conference, VR ‘08. IEEE, vol. 28(6), pp. 47–50 (2008). doi:10.1109/VR.2008.4480749, ISSN: 0272-1716

  64. Potmesil, M., Chakravarty, I.: A lens and aperture camera model for synthetic image generation. ACM SIGGRAPH (1981). doi:10.1145/965161.806818

    Google Scholar 

  65. Porter, T., Carpenter, L., Cook, R.L.: Distributed ray tracing (1984). doi:10.1145/964965.808590

    Google Scholar 

  66. Fearing, P.: Importance ordering for real-time depth of field, in Image Analysis Applications and Computer Graphics, 1995, pp. 372–380, isbn: 978-3-540-60697-0

    Google Scholar 

  67. Rokita, P.: Generating depth-of-field effects in virtual reality applications. IEEE Comput. Graph. Appl. 16(2), 18–21 (1996)

    Article  Google Scholar 

  68. Barsky, B.A.: Vision-realistic rendering: simulation of the scanned foveal image from wavefront data of human subjects. In: Proceedings of the 1st Symposium on Applied perception in graphics and visualization - APGV ‘04, vol. 1, p. 73. ACM Press (2004). doi:10.1145/1012551.1012564, http://dl.acm.org/citation.cfm?id=1012564, ISBN: 1581139144

  69. Mulder, J.D., van Liere R.: Fast perception-based depth of field rendering. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, ser. VRST ’00, pp. 129–133, New York (2000).doi:10.1145/502390.502414, http://doi.acm.org/10.1145/502390.502414, ISBN: 1-58113-316-2

  70. Yu, X., Wang, R., Yu, J.: Real-time depth of field rendering via dynamic light field generation and filtering. Eecisudeledu 29(7). Alliez, P., Bala, K., Zhou, K. (eds.) (2010). http://www.eecis.udel.edu/~jye/lab%5C_research/10/pgdof.pdf

  71. Yu, Z., Thorpe, C., Yu, X., Grauer-Gray, S., Li, F., Yu J.: Dynamic depth of field on live video streams: a stereo solution. Cis.udel.edu. http://www.cis.udel.edu/~feli/%5C_papers/cgi11.pdf

  72. Koenderink, J.J., van Doorn, A.J., Kappers, A.M.: Pictorial surface attitude and local depth comparisons. Percep. Psychophys. 58(2), 163–173 (1996), doi:10.3758/BF03211873, ISSN: 0031-5117

    Google Scholar 

  73. Kersten, D., Knill, D.C., Mamassian, P., Bülthoff, I.: Illusory motion from shadows. (1996). doi:10.1038/379031a0

    Google Scholar 

  74. Langer, M.S., Bülthoff, H.H.: Depth discrimination from shading under diffuse lighting. Perception 29(6), 649–660 (2000). http://www.ncbi.nlm.nih.gov/pubmed/11040949

    Google Scholar 

  75. Luft, T., Colditz, C., Deussen, O.: Image enhancement by unsharp masking the depth buffer (2005)

    Google Scholar 

  76. O’Shea, R.P., Blackburn, S.G., Ono, H.: Contrast as a depth cue. Vis. Res. 34(12), 1595–1604 (1994). doi:10.1016/0042-6989(94)90116-3, ISSN: 00426989

    Google Scholar 

  77. Troscianko, T., Montagnon, R., Le Clerc, J., Malbert, E., Chanteau, P.L.: The role of colour as a monocular depth cue. Vis. Res. 31(11), 1923–1929 (1991). http://www.ncbi.nlm.nih.gov/pubmed/1771776

    Google Scholar 

  78. Buelthoff, H., Mallot, H.: Integration of stereo, shading and texture. In: Blake and Troscianko (eds.) Al and the eye, pp. 119–146. Wiley, New York (1990)

    Google Scholar 

  79. Buckley, D., Frisby, J.P.: Interaction of stereo, texture and outline cues in the shape perception of three-dimensional ridges. Vis. Res. 33(7), 919–933 (1993). . doi:10.1016/0042-6989(93)90075-8, ISSN: 00426989

    Google Scholar 

  80. Cumming, B.G., Johnston, E.B., Parker, A.J.: Vertical disparities and perception of three-dimensional shape. Nature 349(6308), 411–413 (1991) doi:10.1038/349411a0, ISSN: 0028-0836

    Google Scholar 

  81. Johnston, E.B., Cumming, B.G., Landy, M.S.: Integration of stereopsis and motion shape cues. Vis. Res. 34(17), 2259–2275 (1994) doi:10.1016/0042-6989(94)90106-6, ISSN: 00426989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Rößing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rößing, C. (2016). Human Visual Perception. In: Terzis, A. (eds) Handbook of Camera Monitor Systems. Augmented Vision and Reality, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-29611-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29611-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29609-8

  • Online ISBN: 978-3-319-29611-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics