Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Current Challenges in Developing Open Source Computer Algebra Systems

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9582))

Abstract

This note is based on the plenary talk given by the second author at MACIS 2015, the Sixth International Conference on Mathematical Aspects of Computer and Information Sciences. Motivated by some of the work done within the Priority Programme SPP 1489 of the German Research Council DFG, we discuss a number of current challenges in the development of Open Source computer algebra systems. The main focus is on algebraic geometry and the system Singular.

The second author acknowledges support from the DFG projects DE 410/8-1 and -2, DE 410/9-1 and -2, and from the OpenDreamKit Horizon 2020 European Research Infrastructures project (\(\#\)676541). The third author was supported partially by the DFG project HA 3094/8-1 and by proyecto FONDECYT postdoctorado no 3160016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See http://julialang.org.

  2. 2.

    See http://www.grdb.co.uk.

  3. 3.

    See http://opendreamkit.org.

  4. 4.

    See http://jupyter.org.

  5. 5.

    The Jacobian ideal of A is generated by the images of the \(c\times c\) minors of the Jacobian matrix \((\frac{\partial f_i}{\partial x_j})\), where c is the codimension and \(f_1,\dots , f_r\) are polynomial generators for I.

References

  1. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symbolic Comput. 35(4), 403–419 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arzhantsev, I.V., Hausen, J.: Geometric invariant theory via Cox rings. J. Pure Appl. Algebra 213(1), 154–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barakat, M.: Computations of unitary groups in characteristic \(2\) (2014). http://www.mathematik.uni-kl.de/~barakat/forJPSerre/UnitaryGroup.pdf

  4. Behrends, R.: Shared memory concurrency for GAP. Comput. Algebra Rundbrief 55, 27–29 (2014)

    Google Scholar 

  5. Behrends, R., Hammond, K., Janjic, V., Konovalov, A., Linton, S., Loidl, H.-W., Maier, P., Trinder, P.: HPC-GAP: engineering a 21st-century high-performance computer algebra system. Concurrency Comput. Pract. Experience (2016). cpe.3746

    Google Scholar 

  6. Behrends, R., Konovalov, A., Linton, S., Lübeck, F., Neunhöffer, M.: Parallelising the computational algebra system GAP. In: Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, PASCO 2010, pp. 177–178. ACM, New York (2010)

    Google Scholar 

  7. Berchtold, F., Hausen, J.: GIT equivalence beyond the ample cone. Michigan Math. J. 54(3), 483–515 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernal Guillén, M.M.: Relations in the Cox Ring of \(\overline{M}_{0,6}\). Ph.D. thesis, University of Warwick (2012)

    Google Scholar 

  9. Bierstone, E., Milman, P.D.: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128(2), 207–302 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Böhm, J., Decker, W., Laplagne, S., Pfister, G.: Computing integral bases via localization and Hensel lifting (2015). http://arxiv.org/abs/1505.05054

  11. Böhm, J., Decker, W., Laplagne, S., Pfister, G.: Local to global algorithms for the Gorenstein adjoint ideal of a curve (2015). http://arxiv.org/abs/1505.05040

  12. Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: locnormal.lib - A Singular library for a local-to-global approach to normalization (2013). Available in the Singular distribution, http://www.singular.uni-kl.de

  13. Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: modnormal.lib - A Singular library for a modular approach to normalization (2013). Available in the Singular distribution, http://www.singular.uni-kl.de

  14. Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: Parallel algorithms for normalization. J. Symbolic Comput. 51, 99–114 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Böhm, J., Decker, W., Laplagne, S., Seelisch, F.: paraplanecurves.lib - A Singular library for the parametrization of rational curves (2013). Available in the Singular distribution, http://www.singular.uni-kl.de

  16. Böhm, J., Keicher, S., Ren, Y.: gitfan.lib - A Singular library for computing the GIT fan (2015). Available in the Singular distribution, http://www.mathematik.uni-kl.de/~boehm/gitfan

  17. Böhm, J., Keicher, S., Ren, Y.: Computing GIT-fans with symmetry and the Mori chamber decomposition of \(\overline{M}_{0,6}\) (2016)

    Google Scholar 

  18. Boku, D.K., Decker, W., Fieker, C., Steenpass, A.: Gröbner bases over algebraic number fields. In: Proceedings of the International Workshop on Parallel Symbolic Computation, PASCO 2015, pp. 16–24. ACM, New York (2015)

    Google Scholar 

  19. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory (London, 1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bravo, A.M., Encinas, S., Villamayor U., O.: A simplified proof of desingularization and applications. Rev. Mat. Iberoamericana 21(2), 349–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bruns, W., Ichim, B.: Normaliz: algorithms for affine monoids and rational cones. J. Algebra 324(5), 1098–1113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Rest-klassenring nach einem nulldimensionalen Polynomideal. Dissertation, Universität Innsbruck (1965)

    Google Scholar 

  23. de Jong, T.: An algorithm for computing the integral closure. J. Symbolic Comput. 26(3), 273–277 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Decker, W., de Jong, T., Greuel, G.-M., Pfister, G.: The normalization: a new algorithm, implementation and comparisons. In: Dräxler, P., Ringel, C.M., Michler, G.O. (eds.) Computational Methods for Representations of Groups and Algebras. Progress in Mathematics, vol. 173, pp. 177–185. Birkhäuser, Basel (1999)

    Chapter  Google Scholar 

  25. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-2 — A computer algebra system for polynomial computations (2015). http://www.singular.uni-kl.de

  26. Dolgachev, I.V., Hu, Y.: Variation of geometric invariant theory quotients. (With an appendix: “An example of a thick wall” by Nicolas Ressayre). Publ. Math. Inst. Hautes Étud. Sci. 87, 5–56 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

    MATH  Google Scholar 

  28. Eisenbud, D.: The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry. Graduate Texts in Mathematics, vol. 229. Springer, New York (2005)

    MATH  Google Scholar 

  29. Eisenbud, D., Fløystad, G., Schreyer, F.-O.: Sheaf cohomology and free resolutions over exterior algebras. Trans. Am. Math. Soc. 355(11), 4397–4426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Encinas, S., Hauser, H.: Strong resolution of singularities in characteristic zero. Comment. Math. Helv. 77(4), 821–845 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Erocal, B., Motsak, O., Schreyer, F.-O., Steenpass, A.: Refined algorithms to compute syzygies. J. Symb. Comput 74, 308–327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Frühbis-Krüger, A.: Computational aspects of singularities. In: Singularities in Geometry and Topology, pp. 253–327. World Sci. Publ., Hackensack (2007)

    Google Scholar 

  33. Frühbis-Krüger, A.: resolve.lib - A Singular library for the resolution of singularities (2015). Available in the Singular distribution, http://www.singular.uni-kl.de

  34. The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.7.9 (2015)

    Google Scholar 

  35. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes – Combinatorics and Computation, pp. 43–74. Birkhäuser, Basel (2000)

    Chapter  Google Scholar 

  36. Grauert, H., Remmert, R., Stellenalgebren, A.: Analytische Stellenalgebren. Springer, New York (1971). Unter Mitarbeit von O. Riemenschneider, Die Grundlehren der

    Book  MATH  Google Scholar 

  37. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  38. Greuel, G.-M., Laplagne, S., Seelisch, F.: Normalization of rings. J. Symbolic Comput. 45(9), 887–901 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Greuel, G.-M., Laplagne, S., Seelisch, F.: normal.lib - A Singular library for normalization (2010). Available in the Singular distribution, http://www.singular.uni-kl.de

  40. Hampe, S.: a-tint: a polymake extension for algorithmic tropical intersection theory. European J. Combin. 36, 579–607 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hart, B.: ANTIC: Algebraic number theory in C. Comput. Algebra Rundbrief 56, 10–12 (2015)

    Google Scholar 

  42. Hart, W., Johansson, F., Pancratz, S.: FLINT: Fast Library for Number Theory (2013). Version 2.4.0, http://flintlib.org

  43. Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  44. Keicher, S.: Computing the GIT-fan. Internat. J. Algebra Comput. 22(7), 11 (2012). Article ID 1250064

    Article  MathSciNet  MATH  Google Scholar 

  45. Ren, Y.: polymake.so - A Singular module for interfacing with polymake (2015). Available in the Singular distribution, http://www.singular.uni-kl.de

  46. Schreyer, F.-O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstraßschen Divisionssatz und eine Anwendung auf analytische Cohen-Macaulay-Stellenalgebren minimaler Multiplizität. Diploma thesis, Universität Hamburg (1980)

    Google Scholar 

  47. Serre, J.-P.: Bases normales autoduales et groupes unitaires en caractéristique 2. Transform. Groups 19(2), 643–698 (2014)

    Article  MathSciNet  Google Scholar 

  48. Steenpaß, A.: parallel.lib - A Singular library for parallel computations (2015). Available in the Singular distribution, https://www.singular.uni-kl.de

  49. The homalg project authors. The \(\mathtt{{homalg}}\) project - Algorithmic Homological Algebra (2003–2014). http://homalg.math.rwth-aachen.de/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janko Böhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Böhm, J., Decker, W., Keicher, S., Ren, Y. (2016). Current Challenges in Developing Open Source Computer Algebra Systems. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32859-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32858-4

  • Online ISBN: 978-3-319-32859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics