Abstract
In this paper we investigate evolutionary mechanisms and propose a new mutation operator for the evolutionary design of Combinational Logic Circuits (CLCs). Understanding the root causes of evolutionary success is critical to improving existing techniques. Our focus is two-fold: to analyze beneficial mutations in Cartesian Genetic Programming, and to create an efficient mutation operator for digital CLC design. In the experiments performed the mutation proposed is better than or equivalent to traditional mutation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alba, E., Luque, G., Coello Coello, C.A., Hernández Luna, E.: Comparative study of serial and parallel heuristics used to design combinational logic circuits. Optim. Methods Softw. 22(3), 485–509 (2007)
Coello, C.A.C., Aguirre, A.H., Buckles, B.P.: Evolutionary multiobjective design of combinational logic circuits. In: Proceedings of 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 161–170. IEEE (2000)
Coello, C.A.C., Alba, E., Luque, G.: Comparing different serial and parallel heuristics to design combinational logic circuits. In: Proceedings of NASA/DoD Conference on Evolvable Hardware, pp. 3–12. IEEE (2003)
Coello, C.A.C., Christiansen, A.D., Aguirre, A.H.: Use of evolutionary techniques to automate the design of combinational circuits. Int. J. Smart Eng. Syst. Des. 2, 299–314 (2000)
Coello, C.A.C., Luna, E.H., Hernández-Aguirre, A.: Use of particle swarm optimization to design combinational logic circuits. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 398–409. Springer, Heidelberg (2003)
Coello, C.A.C., Zavala, R.L., García, B.M., Hernández-Aguirre, A.: Ant colony system for the design of combinational logic circuits. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 21–30. Springer, Heidelberg (2000)
Ercegovac, M.D., Moreno, J.H., Lang, T.: Introduction to Digital Systems. Wiley, Hoboken (1998)
Gajda, Z., Sekanina, L.: An efficient selection strategy for digital circuit evolution. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 13–24. Springer, Heidelberg (2010)
García, B.M., Coello, C.A.C.: An approach based on the use of the ant system to design combinational logic circuits. Mathw. Soft Comput. 9(3), 235–250 (2002)
Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61–72. Springer, Heidelberg (2013)
Goldman, B.W., Punch, W.F.: Analysis of cartesian genetic programming’s evolutionary mechanisms. IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)
Luke, S., Panait, L.: A comparison of bloat control methods for genetic programming. Evol. Comput. 14(3), 309–344 (2006)
Manfrini, F., Barbosa, H.J.C., Bernardino, H.S.: Optimization of combinational logic circuits through decomposition of truth table and evolution of sub-circuits. In: IEEE Congress on Evolutionary Computation (CEC), pp. 945–950 (2014)
Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a cartesian genetic programming approach. In: Proceedings of Genetic and Evolutionary Computation Conference, vol. 2, pp. 1135–1142 (1999)
Miller, J.F.: Cartesian genetic programming. Springer, Berlin (2011)
Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)
Tocci, R.J., Widmer, N.S., Moss, G.L.: Digital Systems. Pearson, Upper Saddle River (2011)
Turner, A.J., Miller, J.F.: Recurrent cartesian genetic programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 476–486. Springer, Heidelberg (2014)
Turner, A.J., Miller, J.F.: Neutral genetic drift: an investigation using cartesian genetic programming. Genet. Program. Evol. Mach. 16(4), 531–558 (2015)
Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds of inputs and thousands of gates. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 139–150. Springer, Berlin (2015)
Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and reuse of modules in cartesian genetic programming. IEEE Trans. Evol. Comput. 12(4), 397–417 (2008)
Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function landscape. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, p. 204. Springer, Heidelberg (2001)
Acknowledgment
The authors would like to thank the support provided by CNPq (grant 310778/2013-1), FAPEMIG (grants APQ-03414-15 and PEE-00726-16), and PPGMC/UFJF.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Manfrini, F.A.L., Bernardino, H.S., Barbosa, H.J.C. (2016). A Novel Efficient Mutation for Evolutionary Design of Combinational Logic Circuits. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_62
Download citation
DOI: https://doi.org/10.1007/978-3-319-45823-6_62
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45822-9
Online ISBN: 978-3-319-45823-6
eBook Packages: Computer ScienceComputer Science (R0)