Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combining CBR and Deep Learning to Generate Surprising Recipe Designs

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9969))

Included in the following conference series:

Abstract

This paper presents a dual-cycle CBR model in the domain of recipe generation. The model combines the strengths of deep learning and similarity-based retrieval to generate recipes that are novel and valuable (i.e. they are creative). The first cycle generates abstract descriptions which we call “design concepts” by synthesizing expectations from the entire case base, while the second cycle uses those concepts to retrieve and adapt objects. We define these conceptual object representations as an abstraction over complete cases on which expectations can be formed, allowing objects to be evaluated for surprisingness (the peak level of unexpectedness in the object, given the case base) and plausibility (the overall similarity of the object to those in the case base). The paper presents a prototype implementation of the model, and demonstrates its ability to generate objects that are simultaneously plausible and surprising, in addition to fitting a user query. This prototype is then compared to a traditional single-cycle CBR system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gero, J.S.: Computational models of innovative and creative design processes. Technol. Forecast. Soc. Change 64(2), 183–196 (2000)

    Article  Google Scholar 

  2. Grace, K., Maher, M.L., Fisher, D., Brady, K.: Data-intensive evaluation of design creativity using novelty, value, and surprise. Int. J. Des. Creativity Innov. 3, 125–147 (2015)

    Article  Google Scholar 

  3. Boden, M.A.: The Creative Mind: Myths and Mechanisms. Routledge, New York (2003)

    Google Scholar 

  4. French, M.J., Council, D.: Conceptual Design for Engineers. Springer, Heidelberg (1985)

    Book  Google Scholar 

  5. Vadiveloo, M., Dixon, L.B., Mijanovich, T., Elbel, B., Parekh, N.: Dietary variety is inversely associated with body adiposity among us adults using a novel food diversity index. J. Nutr. 145(3), 555–563 (2015)

    Article  Google Scholar 

  6. Nicklaus, S.: Development of food variety in children. Appetite 52(1), 253–255 (2009)

    Article  Google Scholar 

  7. Colton, S., Wiggins, G.A., et al.: Computational creativity: the final frontier? In: Proceedings of the 20th European Conference on Artificial Intelligence, Montpellier, France, vol. 2012, pp. 21–26 (2012)

    Google Scholar 

  8. Gero, J., Maher, M.: Modeling Creativity and Knowledge-Based Creative Design. Psychology Press, UK (2013)

    Google Scholar 

  9. Taylor, C.W.: Various approaches to and definitions of creativity. Nat. Creativity 99–121 (1988)

    Google Scholar 

  10. Newell, A., Shaw, J., Simon, H.A.: The Processes of Creative Thinking. Rand Corporation, USA (1959)

    Google Scholar 

  11. Grace, K., Maher, M.L.: What to expect when youre expecting: the role of unexpectedness in computationally evaluating creativity. In: Proceedings of the 5th International Conference on Computational Creativity, Ljubljana, Sloveniar (2014)

    Google Scholar 

  12. Grace, K., Maher, M.L., Fisher, D., Brady, K.: Modeling expectation for evaluating surprise in design creativity. In: Gero, J.S., Hanna, S. (eds.) Design Computing and Cognition 2014, pp. 189–206. Springer, Switzerland (2015)

    Google Scholar 

  13. Valitutti, A.: Creative systems as dynamical systems. In: Workshop proceedings from the 23rd International Conference on Case-Based Reasoning, Germany, pp. 146–150 (2015)

    Google Scholar 

  14. Ribeiro, P., Pereira, F., Ferrand, M., Cardoso, A.: Case-based melody generation with muzacazuza. In: Proceedings of the Symposium on Artificial Intelligence and Creativity in Arts and Science, pp. 67–74 (2001)

    Google Scholar 

  15. Gervas, P.: Generating poetry from a prose text: creativity versus faithfulness. In: Proceedings of the Symposium on Artificial Intelligence and Creativity in Arts and Science, pp. 93–99 (2001)

    Google Scholar 

  16. Peinado, F., Ancochea, M., Gervas, P.: Automated control of interactions in virtual spaces: a useful task for exploratory creativity. In: Proceedings of the 1st Joint Workshop on Computational Creativity, pp. 191–202 (2004)

    Google Scholar 

  17. Hammond, K.J.: Chef: A model of case-based planning. In: National Conference on Artificial Intelligence, pp. 267–271 (1986)

    Google Scholar 

  18. Hinrichs, T.R., Kolodner, J.L.: The roles of adaptation in case-based design. In: Proceedings of the Ninth National Conference on Artificial Intelligence, vol. 1, pp. 28–33, AAAI Press (1991)

    Google Scholar 

  19. Bridge, D., Larkin, H.: Creating new sandwiches from old. In: Computer Cooking Contest Workshop, pp. 117–124 (2014)

    Google Scholar 

  20. Goel, A.K., Craw, S.: Design, innovation and case-based reasoning. Knowl. Eng. Rev. 20(3), 271–276 (2005)

    Article  Google Scholar 

  21. Byrne, W., Schnier, T., Hendley, R.: Computational intelligence and case-based creativity in design. In: Proceedings of the International Joint Workshop on Computational Creativity, pp. 31–40 (2008)

    Google Scholar 

  22. Smyth, B., McClave, P.: Similarity vs. Diversity. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001). doi:10.1007/3-540-44593-5_25

    Chapter  Google Scholar 

  23. McSherry, D.: Diversity-conscious retrieval. In: Craw, S., Preece, A. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 219–233. Springer, Heidelberg (2002). doi:10.1007/3-540-46119-1_17

    Chapter  Google Scholar 

  24. Gaillard, E., Lieber, J., Nauer, E.: Improving ingredient substitution using formal concept analysis and adaptation of ingredient quantities with mixed linear optimization. In: Computer Cooking Contest Workshop, Frankfort, Germany (2015)

    Google Scholar 

  25. Mller, G., Bergmann, R.: Cookingcake: a framework for the adaptation of cooking recipes represented as workflows. In: Computer Cooking Contest Workshop, Frankfort, Germany, September 2015

    Google Scholar 

  26. Keppler, M., Kohlhase, M., Lauritzen, N., Schmidt, M., Schumacher, P., Spät, A.: Goetheshaker-developing a rating score for automated evaluation of cocktail recipes. In: Computer Cooking Contest Workshop, Cork, Ireland, September 2014

    Google Scholar 

  27. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  28. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Proceedings of the 31st International Conference on Machine Learning, pp. 1278–1286 (2014)

    Google Scholar 

  29. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR) (2013)

    Google Scholar 

  30. Baldi, P., Itti, L.: Of bits and wows: a bayesian theory of surprise with applications to attention. Neural Netw. 23(5), 649–666 (2010)

    Article  Google Scholar 

  31. Grace, K., Maher, M.L.: Surprise-triggered reformulation of design goals. In: Proceedings of AAAI 2016 (to appear). AAAI Press (2016)

    Google Scholar 

  32. Uzzi, B., Mukherjee, S., Stringer, M., Jones, B.: A typical combinations and scientific impact. Science 342(6157), 468–472 (2013)

    Article  Google Scholar 

  33. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  34. Müller, G., Bergmann, R.: Workflow streams: a means for compositional adaptation in process-oriented CBR. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS (LNAI), vol. 8765, pp. 315–329. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11209-1_23

    Google Scholar 

  35. Wang, L., Shen, W., Xie, H., Neelamkavil, J., Pardasani, A.: Collaborative conceptual design state of the art and future trends. Comput. Aided Des. 34(13), 981–996 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazjon Grace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Grace, K., Maher, M.L., Wilson, D.C., Najjar, N.A. (2016). Combining CBR and Deep Learning to Generate Surprising Recipe Designs. In: Goel, A., Díaz-Agudo, M., Roth-Berghofer, T. (eds) Case-Based Reasoning Research and Development. ICCBR 2016. Lecture Notes in Computer Science(), vol 9969. Springer, Cham. https://doi.org/10.1007/978-3-319-47096-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47096-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47095-5

  • Online ISBN: 978-3-319-47096-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics